Điểm đối trung

Đối xứng của ba đường trung tuyến qua ba đường phân giác tương ứng sẽ đồng quy tại điểm đối trung của tam giác

Trong hình học phẳng, điểm đối trung, hay điểm Lemoine, điểm Grebe, là một điểm đặc biệt của tam giác, ba đường đối trung của tam giác sẽ đồng quy tại điểm đối trung của tam giác. Đường đối trung là đường thẳng đối xứng của đường trung tuyến qua đường phân giác tương ứng. Trong Bách khoa toàn thư về các tâm của tam giác điểm đối trung được ký hiệu là X(6).[1]

Tính chất

[sửa | sửa mã nguồn]
  • Cho tam giác ABC, Đường thẳng song song với cạch BC và đi qua điểm đối trung AB, AC tại AC,AB. Đường thẳng song song với cạch CA đi qua điểm đối trung cắt hai cạnh BA, BC tại BC,BA. Đường thẳng song song với AB cắt hai cạnh CA, CB tại CB, CA. Khi đó sáu điểm AC, AB, BC, BA, CB, CA nằm trên đường tròn Lemoine thứ nhất của tam giác ABC.[3]
  • Cho tam giác ABC, Đường thẳng ngược song song với cạch BC và đi qua điểm đối trung AB, AC tại AC,AB. Đường thẳng ngược song song với cạch CA đi qua điểm đối trung cắt hai cạnh BA, BC tại BC,BA. Đường thẳng ngược song song với AB cắt hai cạnh CA, CB tại CB, CA. Khi đó sáu điểm AC, AB, BC, BA, CB, CA nằm trên đường tròn Lemoine thứ hai của tam giác ABC.[4]

Lịch sử

[sửa | sửa mã nguồn]

Điểm đối trung được nghiên cứu bởi nhiều nhà toán học. Nhà toán học pháp Émile Lemoine người pháp đã chứng minh các kết quả về điểm đối trung năm 1873, và Ernst Wilhelm Grebe công bố nó trên một bài báo năm 1847. Simon Antoine Jean L'Huilier cũng đề cập về điểm này năm 1809.[5]

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Encyclopedia of Triangle Centers: This is PART 1: Introduction and Centers X(1) - X(1000), accessed 2014-11-06.
  2. ^ Beban-Brkić, J.; Volenec, V.; Kolar-Begović, Z.; Kolar-Šuper, R. (2013), "On Gergonne point of the triangle in isotropic plane", Rad Hrvatske Akademije Znanosti i Umjetnosti, 17: 95–106, MR 3100227.
  3. ^ Casey, J. "Lemoine's, Tucker's, and Taylor's Circle." Supp. Ch. §3 in A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 179-189, 1888.
  4. ^ Altshiller-Court, N. College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools, 2nd ed., rev. enl. New York: Barnes and Noble, 1952
  5. ^ Honsberger, Ross (1995), "Chapter 7: The Symmedian Point", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Washington, D.C.: Mathematical Association of America.

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Hướng dẫn tính năng Thần Hỏa LMHT
Hướng dẫn tính năng Thần Hỏa LMHT
Thần Hỏa là một hệ thống thành tựu theo dõi chỉ số trên từng vị tướng giúp lưu lại, vinh danh và khoe mẽ nhưng khoảnh khắc thú vị trong và ngoài trận đấu
Ước mơ gấu dâu và phiên bản mini vô cùng đáng yêu
Ước mơ gấu dâu và phiên bản mini vô cùng đáng yêu
Mong ước nho nhỏ về vợ và con gái, một phiên bản vô cùng đáng yêu
Chúng ta có phải là một thế hệ “chán đi làm”?
Chúng ta có phải là một thế hệ “chán đi làm”?
Thực tế là, ngay cả khi còn là lính mới tò te, hay đã ở vai trò đồng sáng lập của một startup như hiện nay, luôn có những lúc mình cảm thấy chán làm việc vcđ
Giải nghĩa 9 cổ ngữ dưới Vực Đá Sâu
Giải nghĩa 9 cổ ngữ dưới Vực Đá Sâu
Tìm hiểu những cổ ngữ được ẩn dấu dưới Vực Đá Sâu