Bài toán xâu con chung dài nhất

Đây là bài toán tìm một xâu (string) hoặc nhiều xâu là xâu con của hai hoặc nhiều xâu. Không nên nhầm lẫn giữa bài toán này với Bài toán chuỗi con chung dài nhất.

Xâu con dài nhất của "ABAB", "BABA" và "ABBA" là các xâu "AB" và "BA" với độ dài bằng 2. Các xâu con khác (có độ dài ngắn hơn là "A" và "B").

ABAB
 |||
 BABA
 ||
ABAA

Định nghĩa bài toán

[sửa | sửa mã nguồn]

- Định nghĩa: Cho hai xâu S độ dài m và xâu T độ dài n, tìm xâu có độ dài lớn nhất là xâu con của cả hai xâu S và T. - Tổng quát hóa bài toán này là bài toán tìm xâu con k-chung (k-common substring problem): Cho một tập xâu , trong đó và Σ. Với mỗi giá trị k thỏa mãn 2 ≤ , tìm các xâu con chung dài nhất của ít nhất xâu.

Thuật toán

[sửa | sửa mã nguồn]

Có thể tìm độ dài và vị trí bắt đầu của các xâu con dài nhất của S và T trong bằng cách sử dụng Cây hậu tố khái quát (Generalized suffix tree). Ngoài ra cũng có thể giải quyết bài toán theo phương pháp Quy hoạch động với độ phức tạp .

Độ phức tạp của bài toán tổng quát tương ứng là ·...·.

Cây hậu tố

[sửa | sửa mã nguồn]
Cây hậu tố tổng quát cho các xâu "ABAB", "BABA" và "ABBA", được đánh số tương ứng 0, 1 và 2.

Quy hoạch động

[sửa | sửa mã nguồn]

Có thể tìm các hậu tố (suffix) dài nhất của các tiền tố (prefix) của các xâu. Hậu tố dài nhất được định nghĩa:

Ví dụ với hai xâu "ABAB" và "BABA":

A B A B
0 0 0 0 0
B 0 0 1 0 1
A 0 1 0 2 0
B 0 0 2 0 3
A 0 1 0 3 0

Hậu tố dài nhất của các tiền tố có thể của các xâu ST chính là xâu con dài nhất của chúng. Các xâu con này được đánh dấu theo đường chéo, màu đỏ trong bảng. Ví dụ: các xâu con dài nhất là "BAB" và "ABA":

Có thể mở rộng phương pháp này để tìm xâu con dài nhất của nhiều xâu hơn nữa bằng cách đưa thêm 1 chiều vào bảng cho mỗi xâu mới.

function LCSubstr(S[1..m], T[1..n])

L:= array(0..m, 0..n)
z:= 0
ret:= {}
for i:= 1..m
  for j:= 1..n
  if S[i] = T[j]
  if i = 1 or j = 1
 L[i,j]:= 1
  else
 L[i,j]:= L[i-1,j-1] + 1
  if L[i,j] > z
 z:= L[i,j]
 ret:= {}
  if L[i,j] = z
 ret:= ret ∪ {S[i-z+1..i]}
return ret

Thuật toán dùng quy hoạch động có độ phức tạp là .

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Vài trò của Hajime Kashimo sau Tử diệt hồi du
Vài trò của Hajime Kashimo sau Tử diệt hồi du
Hajime Kashimo là một chú thuật sư từ 400 năm trước, với sức mạnh phi thường của mình, ông cảm thấy nhàm chán
[Review Sách] Sống thực tế giữa đời thực dụng - Khi nỗ lực trở thành bản năng
[Review Sách] Sống thực tế giữa đời thực dụng - Khi nỗ lực trở thành bản năng
Trải qua thời thơ ấu không như bao đứa trẻ bình thường khác, một phần nào đó đã tác động không nhỏ đến cái nhìn của Mễ Mông
Tìm hiểu về Puskas Arena - Sân vận động lớn nhất ở thủ đô Budapest của Hungary
Tìm hiểu về Puskas Arena - Sân vận động lớn nhất ở thủ đô Budapest của Hungary
Đây là một sân vận động tương đối mới, được bắt đầu xây dựng vào năm 2016 và hoàn thành vào cuối năm 2019
Story Quest là 1 happy ending đối với Furina
Story Quest là 1 happy ending đối với Furina
Dạo gần đây nhiều tranh cãi đi quá xa liên quan đến Story Quest của Furina quá, mình muốn chia sẻ một góc nhìn khác rằng Story Quest là 1 happy ending đối với Furina.