Bất đẳng thức Bernstein (lý thuyết xác suất)

Trong lý thuyết xác suất, các bất đẳng thức Bernstein cho chặn trên của xác suất tổng các biến ngẫu nhiên độc lập nhận giá trị lệch khỏi giá trị kì vọng. Trong trường hợp đơn giản nhất, nếu X1, ..., Xn là các biến ngẫu nhiên Bernoulli độc lập nhận giá trị +1 và −1 với xác suất 1/2, thì với mọi số thực dương ,

Các bất đẳng thức Bernstein được chứng minh và xuất bản bởi Sergei Bernstein trong thập niên 1920 và 1930.[1][2][3][4] Sau này các bất đẳng thức này được phát hiện lại ở nhiều dạng khác nhau. Do đó nhiều trường hợp đặc biệt của bất đẳng thức Bernstein còn được gọi là chặn Chernoff, bất đẳng thức Hoeffdingbất đẳng thức Azuma.

Một số bất đẳng thức

[sửa | sửa mã nguồn]

1. Đặt X1, ..., Xn là các biến ngẫu nhiên độc lập có giá trị kì vọng bằng 0. Giả sử |X i| ≤ M gần như chắc chắn, với mọi i. Khi đó, với mọi t dương,

2. Đặt X1,..., Xn là các biến ngẫu nhiên độc lập. Giả sử với một số thực dương L nào đó và với mọi số nguyên k > 1,

thì

3. Đặt X1,..., Xn là các biến ngẫu nhiên độc lập. Giả sử

với mọi số nguyên k > 3. Đặt . Thì,

4. Bernstein cũng chứng minh tổng quát hóa của các bất đẳng thức trên cho trường hợp các biến ngẫu nhiên phụ thuộc yếu. Chẳng hạn có thể mở rộng bất đẳng thức (2) như sau. Đặt X1, ..., Xn là các biến ngẫu nhiên bất kì. Giả sử với mọi số nguyên i > 0,

thì

Ý tưởng của chứng minh

[sửa | sửa mã nguồn]

Chứng minh sử dụng bất đẳng thức Markov cho biến ngẫu nhiên , với giá trị thích hợp cho tham số .

Tham khảo

[sửa | sửa mã nguồn]

(Theo: S.N.Bernstein, Collected Works, Nauka, 1964)

  1. ^ S.N.Bernstein, "On a modification of Chebyshev's inequality and of the error formula of Laplace" vol. 4, #5 (original publication: Ann. Sci. Inst. Sav. Ukraine, Sect. Math. 1, 1924)
  2. ^ Bernstein, S. N. (1937). "Об определенных модификациях неравенства Чебышева" [On certain modifications of Chebyshev's inequality]. Doklady Akademii Nauk SSSR. Quyển 17 số 6. tr. 275–277.
  3. ^ S.N.Bernstein, "Theory of Probability" (Russian), Moscow, 1927
  4. ^ J.V.Uspensky, "Introduction to Mathematical Probability", McGraw-Hill Book Company, 1937

Có thể xem một bản dịch của các kết quả này ở Prokhorov, A.V.; Korneichuk, N.P. (2001), "Bernstein inequality", trong Hazewinkel, Michiel (biên tập), Bách khoa toàn thư Toán học, Springer, ISBN 978-1-55608-010-4

Chúng tôi bán
Bài viết liên quan
Facebook phỏng vấn vị trí Developer như thế nào?
Facebook phỏng vấn vị trí Developer như thế nào?
Như với hầu hết các công ty, trước tiên Facebook sẽ tiến hành một loạt các cuộc phỏng vấn qua điện thoại và sau đó nếu vượt qua, bạn sẽ được phỏng vấn trực tiếp
Vật phẩm thế giới Longinus - Overlord
Vật phẩm thế giới Longinus - Overlord
☄️🌟 Longinus 🌟☄️ Vật phẩm cấp độ thế giới thuộc vào nhóm 20 World Item vô cùng mạnh mẽ và quyền năng trong Yggdrasil.
Cảm nhận về Saltburn: Hành trình đoạt vị của anh đeo kính nghèo hèn
Cảm nhận về Saltburn: Hành trình đoạt vị của anh đeo kính nghèo hèn
Đầu tiên, phim mở màn với những tình huống khá cliché của một cậu sinh viên tên Oliver Quick đang trên hành trình hòa nhập với những sinh viên khác của trường Đại học Oxford
Ma vương Luminous Valentine -True Ruler of Holy Empire Ruberios
Ma vương Luminous Valentine -True Ruler of Holy Empire Ruberios
Luminous Valentine (ルミナス・バレンタイン ruminasu barentain?) là một Ma Vương, vị trí thứ năm của Octagram, và là True Ruler of Holy Empire Ruberios. Cô ấy là người cai trị tất cả các Ma cà rồng và là một trong những Ma Vương lâu đời nhất.