Chặn Chernoff

Trong lý thuyết xác suất, chặn Chernoff, đặt tên theo Herman Chernoff, cho một chặn trên giảm theo hàm mũ của đuôi phân phối của tổng nhiều biến ngẫu nhiên độc lập. Nó thường mạnh hơn các bất đẳng thức sử dụng mômen bậc nhất hay bậc hai chẳng hạn như bất đẳng thức Markov hay bất đẳng thức Chebyshev.

Nó có liên hệ với bất đẳng thức Bernstein, và bất đẳng thức Hoeffding.

Sau đây là một ví dụ trường hợp đặc biệt của chặn Chernoff. Giả sử X1,..., Xn là các biến ngẫu nhiên Bernoulli độc lập với xác suất p > 1/2. Khi đó, nếu gọi xác suất xảy ra ít nhất n/2 sự kiện P, thì

Chặn Chernoff cho thấy P có chặn dưới như sau:

Dưới đây, trường hợp này sẽ được tổng quát hóa theo nhiều hướng khác nhau. Có nhiều phiên bản khác nhau của chặn Chernoff: sai số có thể là sai số tuyệt đối hoặc sai số tương đối so với giá trị kỳ vọng.

Bước thứ nhất trong chứng minh của chặn Chernoff

[sửa | sửa mã nguồn]

Chặn Chernoff cho biến ngẫu nhiên X là tổng của n biến ngẫu nhiên độc lập , được chứng minh bằng cách xem xét phân bố của etX với giá trị thích hợp của t. Phương pháp này được áp dụng đầu tiên bởi Sergei Bernstein để chứng minh bất đẳng thức Bernstein.

Theo bất đẳng thức Markov và tính chất độc lập, ta có bất đẳng thức sau:

Với mọi t > 0,

Do có thể chọn t tùy ý, ta có

Tương tự như vậy,

Do đó,

Phát biểu và chứng minh

[sửa | sửa mã nguồn]

Trường hợp sai số tuyệt đối

[sửa | sửa mã nguồn]

Định lý sau đây được chứng minh bởi Wassily Hoeffding và được gọi là định lý Chernoff-Hoeffding.

Giả sử các biến là độc lập và có cùng phân bố. Giả sử , , và . Khi đó

trong đó

khoảng cách Kullback-Leibler giữa các biến ngẫu nhiên Bernoulli với tham số .

Chứng minh

[sửa | sửa mã nguồn]

Chứng minh xuất phát từ bất đẳng thức (+) ở trên. Đặt . Chọn a = mq và thay vào (+), ta có:

Do , , ta có

Bằng cách lấy lôgarit và tính đạo hàm, ta có thể tính được giá trị infimum ở trên thông qua đạo hàm sau

Giải khi đạo hàm ở trên bằng 0 để tính infimum, ta có

nên .

Do đó, .

, ta có , nên giá trị của là hợp lệ. Sau khi đã giải được , ta thay giá trị này vào phương trình ở trên và thu được

Tóm lại, ta thu được kết quả cần chứng minh như sau

Để có bất đẳng thức thứ hai, ta xét các biến , và áp dụng chứng minh tương tự.

Chặn đơn giản hơn

[sửa | sửa mã nguồn]

Có thể thu được một chặn đơn giản hơn bằng cách áp dụng . Mệnh đề này có thể được chứng minh bằng tính chất lồi của và tính chất . Chặn này là một trường hợp đặc biệt của bất đẳng thức Hoeffding. Đôi khi chặn cho cũng được sử dụng.

Trường hợp sai số tương đối

[sửa | sửa mã nguồn]

Giả sử là các biến ngẫu nhiên độc lập nhận giá trị 0 hoặc 1. Giả sử . Khi đó, nếu đặt là giá trị kỳ vọng của , thì với mọi

Chứng minh

[sửa | sửa mã nguồn]

Theo (+),

Đẳng thức ở dòng thứ 3 là do nhận giá trị với xác suất và giá trị với xác suất .

Viết lại Không thể phân tích cú pháp (MathML hoặc SVG/PNG (khuyến khích các trình duyệt và công cụ trợ năng hiện đại): Phản hồi không hợp lệ (“Math extension cannot connect to Restbase.”) từ máy chủ “http://localhost:6011/vi.wikipedia.org/v1/”:): {\displaystyle p_i(e^t-1) + 1} và áp dụng (với bất đẳng thức chặt khi ) cho , ta có

Không thể phân tích cú pháp (MathML hoặc SVG/PNG (khuyến khích các trình duyệt và công cụ trợ năng hiện đại): Phản hồi không hợp lệ (“Math extension cannot connect to Restbase.”) từ máy chủ “http://localhost:6011/vi.wikipedia.org/v1/”:): {\displaystyle \begin{align} &\Pr[X > (1+\delta)\mu] < \frac{\prod_{i=1}^n\exp(p_i(e^t-1))}{\exp(t(1+\delta)\mu)} \\ &\qquad = \frac{\exp\left((e^t-1)\sum_{i=1}^n p_i\right)}{\exp(t(1+\delta)\mu)} = \frac{\exp((e^t-1)\mu)}{\exp(t(1+\delta)\mu)}. \end{align} }

Chọn nên khi . Thay giá trị của vào biểu thức trên, ta thu được

Đây chính là bất đẳng thức cần chứng minh. Bằng một chứng minh tương tự, ta có

Chặn Chernoff cho ma trận

[sửa | sửa mã nguồn]

Rudolf AhlswedeAndreas Winter đã chứng minh một phiên bản của chặn Chernoff cho các biến ngẫu nhiên nhận giá trị ma trận.[1]

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Kỹ năng của Toshinori Yagi - One For All - Boku no Hero Academia
Kỹ năng của Toshinori Yagi - One For All - Boku no Hero Academia
Là anh hùng nổi tiếng nhất thế giới - All Might, Toshinori là người kế nhiệm thứ 8 và có thể sử dụng rất thành thạo One For All
Yuki Tsukumo - Nhân vật tiềm năng và cái kết đầy nuối tiếc
Yuki Tsukumo - Nhân vật tiềm năng và cái kết đầy nuối tiếc
Jujutsu Kaisen là một series có rất nhiều nhân vật khác nhau, với những khả năng, tính cách và cốt truyện vô cùng đa dạng
Khi doanh nhân âm thầm trả giá về tinh thần
Khi doanh nhân âm thầm trả giá về tinh thần
The Psychological Price of Entrepreneurship" là một bài viết của Jessica Bruder đăng trên inc.com vào năm 2013
Nhân vật Izana Kurokawa trong Tokyo Revengers
Nhân vật Izana Kurokawa trong Tokyo Revengers
Izana là một người đàn ông mang nửa dòng máu Philippines, nửa Nhật Bản, có chiều cao trung bình với đôi mắt to màu tím, nước da nâu nhạt và mái tóc trắng ngắn thẳng được tạo kiểu rẽ ngôi giữa