Biểu thức dạng đóng

Trong toán học, một biểu thức dạng đóng là một biểu thức toán học có thể được tính toán với số phép toán hữu hạn. Nó có thể chứa hằng số, biến số, một số phép toán "đã biết" (ví dụ: + − × ÷), và hàm số (ví dụ., các hàm căn bậc n, lũy thừa, lôgarit, hàm lượng giác, và các hàm hyperbol nghịch đảo), nhưng thường không có giới hạn. Tập hợp các phép toán và các hàm số được thừa nhận trong một biểu thức đóng có thể thay đổi theo tác giả và ngữ cảnh.

Các bài toán được cho là có thể thực hiện nếu chúng có thể được giải quyết dưới dạng biểu thức dạng đóng.

Ví dụ: nghiệm của đa thức

[sửa | sửa mã nguồn]

Cách giải bất kỳ phương trình bậc hai nào với số phức có thể được thể hiện ở dạng đóng với các phép cộng, phép trừ, phép nhân, phép chiacăn bậc hai, chúng đều là các hàm cơ bản. Ví dụ, phương trình bậc hai:

có thể thực hiện/theo dõi được vì các giải pháp của nó có thể được thể hiện dưới dạng biểu thức dạng đóng, tức là chỉ dùng các hàm cơ bản:

Tương tự lời giải của phương trình bậc ba và bậc bốn có thể được biểu diễn bằng các phép toán số học, khai căn bậc hai, và khai căn bậc ba, hoặc sử dụng các phép tính số học và lượng giác. Tuy nhiên, có những phương trình bậc năm mà không có các lời giải dạng đóng bằng cách sử dụng các hàm số cơ bản, chẳng hạn phương trình x5 − x + 1 = 0.

Một lĩnh vực nghiên cứu về toán học được đề cập đến với cái tên là lý thuyết Galois liên quan đến chứng minh rằng không có biểu hiện dạng đóng trong một số ngữ cảnh, dựa trên ví dụ trung tâm của các lời giải dạng đóng đối với đa thức.

Đọc thêm

[sửa | sửa mã nguồn]
  • Ritt, J. F. (1948), Integration in finite terms
  • Chow, Timothy Y. (tháng 5 năm 1999), “What is a Closed-Form Number?”, American Mathematical Monthly, 106 (5): 440–448, doi:10.2307/2589148, JSTOR 2589148
  • Jonathan M. Borwein and Richard E. Crandall (tháng 1 năm 2013), “Closed Forms: What They Are and Why We Care”, Notices of the American Mathematical Society, 60 (1): 50–65, doi:10.1090/noti936

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Chú thuật hồi chiến 252: Quyết Chiến Tại Tử Địa Shinjuku
Chú thuật hồi chiến 252: Quyết Chiến Tại Tử Địa Shinjuku
Tiếp tục trận chiến với Nguyền Vương, tua ngược lại thời gian 1 chút thì lúc này Kusakabe và Ino đang đứng bên ngoài lãnh địa của Yuta
Việt Nam và ván cờ Biển Đông
Việt Nam và ván cờ Biển Đông
Không ai có thể chọn được hàng xóm, và Việt Nam đã mang trên mình số phận của 1 quốc gia nhỏ yếu kề tường sát vách bên cạnh 1 nước lớn và hùng mạnh là Trung Quốc
Cung mệnh và chòm sao của Kaveh - Genshin Impact
Cung mệnh và chòm sao của Kaveh - Genshin Impact
Hiện tại thì cả tên cung mệnh lẫn tên banner của Kaveh đều có liên quan đến thiên đường/bầu trời, tên banner lão là 天穹の鏡 (Thiên Khung chi Kính), bản Việt là Lăng kính vòm trời, bản Anh là Empryean Reflection (Heavenly reflection
IT đã không còn là vua của mọi nghề nữa rồi
IT đã không còn là vua của mọi nghề nữa rồi
Và anh nghĩ là anh sẽ code web như vậy đến hết đời và cuộc sống sẽ cứ êm đềm trôi mà không còn biến cố gì nữa