Với tập hợp các số chẵn là một i-đê-an nguyên tố, được ký hiệu là .
Trong một vành , một i-đê-an tối đại là một i-đê-an tối đại theo quan hệ bao hàm trong tập hợp tất cả các i-đê-an thực sự của , tức là được chứa trong chính xác hai i-đê-an của : và . Một i-đê-an tối đại thì là nguyên tố.[2]
Nếu là một đa tạp trơn, là vành các hàm thực trơn trên và là một điểm của thì tập hợp tất cả các hàm trơn với tạo thành một i-đê-an tối đại, và do đó nguyên tố, của .
Một i-đê-an của một vành (có đơn vị) là nguyên tố khi và chỉ khi vành thương là một miền nguyên. Nói riêng, một vành giao hoán là một miền nguyên khi và chỉ khi là một i-đê-an nguyên tố.[1]
Tổng của hai i-đê-an nguyên tố không nhất thiết là nguyên tố. Ví dụ, vành có các i-đê-an nguyên tố và . Tổng của chúng là không phải là nguyên tốt: nhưng hai thừa số của nó lại không nằm trong .
Các i-đê-an hai phía nguyên tố trong một vành không giao hoán có thể được định nghĩa như sau:[3][4]: một i-đê-an (hai phía) của một vành (không nhất thiết giao hoán) được gọi là một i-đê-an nguyên tố nếu và với mọi i-đê-an (hai phía) , ta có: .
^Lưu ý rằng Lam sử dụng quy ước "ideal" có nghĩa là "two-sided ideal". Xem Lam (2001), tr. 3 (trong khi một số tác giả sử dụng quy ước "ideal" có nghĩa là "left ideal").