Tích phân Monte-Carlo

Một minh họa về tích hợp Monte-Carlo.

Tích phân Monte Carlo là một phương pháp tìm giá trị số của tích phân, đặc biệt là các tích phân đa chiều có dạng:

trên một miền không gian đa chiều V sử dụng một số hữu hạn các lần gọi hàm f.

Các phương pháp tích phân Monte-Carlo bao gồm phương pháp cơ bản, phương pháp lấy mẫu có trọng tâm,... Các phương pháp này cũng cho biết ước lượng sai số thống kê của phép tính, tuy rằng ước lượng này có thể không chính xác do việc khảo sát ngẫu nhiên hàm số trên miền không gian đa chiều có thể không cho thấy hết mọi biểu hiện của hàm.

Tích phân Monte Carlo cơ bản

[sửa | sửa mã nguồn]

Tích phân một chiều

[sửa | sửa mã nguồn]

Ở dạng cơ bản nhất, giá trị của tích phân một chiều:

được dự đoán là tổng:

trong đó

Vthể tích mở rộng của miền tích phân
xi là các giá trị lấy ngẫu nhiên đều trong khoảng [a, b].
N là tổng số lần lấy mẫu xi

Sai số của dự đoán được tính bằng căn của phương sai của giá trị trung bình:

Khi số lần lấy mẫu, N, tăng, phương sai giảm theo 1/N, tức là sai số của phép tính giảm theo .

Tích phân đa chiều

[sửa | sửa mã nguồn]

Phương pháp trên được mở rộng cho tích phân đa chiều:

Lấy mẫu có trọng tâm

[sửa | sửa mã nguồn]

Tích phân một chiều

[sửa | sửa mã nguồn]

Nếu biết hàm cần tích phân f(x) cư xử như nào, ta có thể chọn được một hàm g(x) có giá trị biến đổi gần giống |f(x)| trên miền cần tích phân, ta có thể biến đổi tích phân thành:

với:

g(x) thỏa mãn điều kiện chuẩn hóa:

Lúc này có thể lấy các điểm xi ngẫu nhiên trong khoảng [a, b] theo phân bố xác suất g(x') để tìm giá trị tích phân:

Hàm g(x) càng giống f(x) thì phương sai của f(x)/g(x) càng nhỏ và sai số của phép tính càng nhỏ.

Một bất lợi của phương pháp này là sai số có thể lớn nếu hàm g(x) được chọn gần bằng 0 tại những điểm mà f(x) khác 0. Lúc đó, phương sai của f(x)/g(x) có thể lớn đến vô cùng. Lỗi này có thể khó phát hiện khi miền giá trị tại đó g(x) bằng 0 là rất nhỏ.

Tham khảo

[sửa | sửa mã nguồn]
  • W.H. Press, G.R. Farrar, Recursive Stratified Sampling for Multidimensional Monte Carlo Integration, Computers in Physics, v4 (1990), pp190–195.
  • Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Simple Monte Carlo Integration" and "Adaptive and Recursive Monte Carlo Methods." §7.6 and 7.8 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 295–299 and 306-319, 1992.
  • G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, Journal of Computational Physics 27, 192-203, (1978)
  • G.P. Lepage, VEGAS: An Adaptive Multi-dimensional Integration Program, Cornell preprint CLNS 80-447, March 1980
  • Ueberhuber, C. W. "Monte Carlo Techniques." §12.4.4 in Numerical Computation 2: Methods, Software, and Analysis. Berlin: Springer-Verlag, pp. 124–125 and 132-138, 1997.
  • York Acad. Sci. 86, 844-874, 1960.
  • Weinzierl, S. "Introduction to Monte Carlo Methods." 23 Jun 2000. http://arxiv.org/abs/hep-ph/0006269/.
Chúng tôi bán
Bài viết liên quan
Vì sao bạn “tiết kiệm” mãi mà vẫn không có dư?
Vì sao bạn “tiết kiệm” mãi mà vẫn không có dư?
Số tiền bạn sở hữu gồm tiền của bạn trong ngân hàng, tiền trong ví, tiền được chuyển đổi từ vật chất
Giới thiệu anime Golden Time
Giới thiệu anime Golden Time
Golden Time kể về những cuộc tình giữa những chàng trai và cô gái tại trường luật Tokyo
Nhân vật Tokitou Muichirou - Kimetsu no Yaiba
Nhân vật Tokitou Muichirou - Kimetsu no Yaiba
Tokito Muichiro「時透 無一郎 Tokitō Muichirō​​」là Hà Trụ của Sát Quỷ Đội. Cậu là hậu duệ của Thượng Huyền Nhất Kokushibou và vị kiếm sĩ huyền thoại Tsugikuni Yoriichi.
Nhân vật Bukubukuchagama (ぶくぶく茶釜) - Overlord
Nhân vật Bukubukuchagama (ぶくぶく茶釜) - Overlord
Bukubukuchagama là một trong chín thành viên đầu tiên sáng lập guid Ainz Ooal Gown và cũng là 1 trong 3 thành viên nữ của guid.