Tiêu chuẩn Leibniz cho chuỗi đan dấu được mang tên của nhà toán học, triết học, khoa học và lôgíc học người ĐứcGottfried Wilhelm Leibniz (1646-1716). Tiêu chuẩn chỉ ra điều kiện cho một chuỗi hội tụ. Đây là một dấu hiệu để kiểm tra (test) về tính hội tụ của một chuỗi đan dấu.
Ta sẽ chứng minh rằng cả hai dãy tổng riêng: với một số lẻ các số hạng, và với một số chẵn các số hạng, đều hội tụ đến cùng một số giới hạn L. Vì thế dãy tổng riêng chung cũng hội tụ đến L.
Dãy tổng riêng lẻ giảm đơn điệu vì:
trong khi dãy tổng riêng chẵn tăng đơn điệu:
đều là bởi theo giả thiết an giảm đơn điệu với n.
Hơn nữa, vì các an dương nên . Vì thế ta có thể cho tất cả những điều này vào bất đẳng thức nối tiếp sau:
Bây giờ chú ý rằng a1 − a2 là một cận dưới của dãy đơn điệu giảm S2m+1, theo định lý hội tụ đơn điệu ta có dãy này hội tụ khi m tiến đến vô cùng. Tương tự, dãy tổng riêng chẵn cũng hội tụ.
với m bất kỳ. Điều này nghĩa là các tổng riêng của một chuỗi đan dấu cũng chạy "luân phiên" bên trên và dưới giới hạn cuối cùng. Nói chính xác hơn, khi nào có một số lẻ (hay chẵn) các số hạng, tức là số hạng cuối là một số hạng dương (hay âm) thì tổng riêng ở trên (ở dưới) giới hạn cuối cùng.
Cách hiểu này dẫn ngay đến sự bị chặn của sai số của tổng riêng, được chứng minh dưới đây.
Một phản ví dụ: tất cả các điều kiện của dấu hiệu hội tụ này, tức là dãy phải hội tụ đến 0 và là đơn điệu giảm, đều phải thỏa mãn để có kết luận đúng. Xét chuỗi
là chuỗi đan dấu và các số hạng dần đến 0. Tuy nhiên sự đơn điệu dãy lại không có và ta không thể áp dụng dấu hiệu này. Thực ra chuỗi này là phân kỳ. Thật vậy, với tổng riêng ta có: tức là bằng hai lần tổng riêng của chuỗi điều hòa là một chuỗi phân kỳ. Vì vậy chuỗi ban đầu là phân kỳ.
Câu chuyện lấy bối cảnh ở một thế giới giả tưởng nơi tồn tại những con quái vật được gọi là ác quỷ, và thế giới này đang phải chịu sự tàn phá của chúng.