Nalazi se u mitohondrijama, a iRNK frataksina se uglavnom eksprimira u tkivima s visokom brzinom metabolizma. Funkcija frataksina nije jasna, ali je uključen u sastavljanje klastera gvožđa i sumpora. Predloženo je da djeluje ili kao gvožđev šaperon ili kao protein za skladištenje gvožđa. Smanjena ekspresija frataksina je uzrok Friedreichove ataksije.
Rendgenska kristalografija pokazala je da se ljudski frataksin sastoji od β-listova koje podržava par paralelnih α-heliksa, tvoreći kompaktni αβ sendvič.[8] Frataksinski homolozi u drugih vrsta su slični, sa istom strukturom jezgra. Međutim, repne sekvence frataksina, koje se protežu od kraja jedne spirale, razlikuju se u sekvenci i razlikuju se po dužini. Ljudski frataksin ima dužu repnu sekvencu od frataksina koji se nalazi u bakterijama ili kvascima. Pretpostavlja se da je svrha repa stabilizacija proteina.[8]
Frataksin je lokaliziran u mitohondrijama. Funkcija frataksina nije potpuno jasna, ali izgleda da je uključen u sastavljanje grupa gvožđe-sumporna grupa. Predloženo je da djeluje ili kao gvožđev šaperon ili kao protein za skladištenje gvožđa.[10]
Smanjena ekspresija frataksina je uzrok Friedreichove ataksije (FRDA), neurodegenerativne bolesti. Smanjenje ekspresije gena frataksina može se pripisati bilo utišavanju transkripcije gena za frataksin zbog epigenetičkih modifikacija u hromosomskom entitetu [13] ili od nesposobnosti prerade produženog ponavljanja GAA u prvom intronu pre-iRNK kao u bakterijama[14] i ljudskim ćelijama[15] ili oboma. Ekspanzija introna ponavljajućeg trinukleotida GAA rezultira Friedreichovom ataksijom.[16] Ovo prošireno ponavljanje uzrokuje stvaranje R-petlje, a upotreba oligonukleotida usmjerena na ponavljanje da poremeti R-petlju može reaktivirati ekspresiju frataksina.[17]
Oko 96% pacijenata sa FRDA ima ponavljajuću ekspanziju trinukleotida GAA u intronu 1 oba alela FXN gena.[18] Sve u svemu, to dovodi do smanjenja sinteze frataksinske iRNK i smanjenja (ali ne i obustavlja) sintezu proteina frataksina kod ljudi sa FRDA. (Podgrupa pacijenata sa FRDA ima ekspanziju GAA u jednom hromosomu i tačkastu mutaciju u FXN egzonu u drugom hromosomu.) U tipskom slučaju, dužina alela sa kraćom ekspanzijom GAA obrnuto korelira sa nivoima frataksina . Periferno tkivo pacijenata sa FRDA obično ima manje od 10% nivoa frataksina koje pokazuju nepogođene osobe.[18] Niži nivoi frataksina rezultiraju ranijim početkom i bržim napredovanjem bolesti.
FRDA karakteriziraju ataksija, gubitak osjetila i kardiomiopatija. Nije sasvim jasan razlog zašto nedostatak frataksina uzrokuje ove simptome. Na ćelijskoj razini, povezan je s nakupljanjem gvožga u mitohondrijama i povećanom osjetljivošću na oksidanse. Iz razloga koji nisu dobro razumljivi, ovo prvenstveno utiče na tkivokorijene dorzalnih ganglija, mali mozak i srčani mišić.[9]
Kod miševa je potpuna inaktivacija gena FXN smrtonosna u ranoj embrioskoj fazi.[19] Iako gotovo svi organizmi eksprimiraju homologe frataksina, ponavljanje GAA u intronu 1 postoji samo kod ljudi i drugih primata, pa se mutacija koja uzrokuje FDRA ne može prirodno pojaviti u drugim životinjama. Naučnici su razvili nekoliko opcija za modeliranje ove bolesti kod miševa. Jedan pristup je utišavanje ekspresije frataksina u samo jednom specifičnom tipu tkiva od interesa: srce (miševi modificirani na ovaj način nazivaju se MCK), svi neuroni (NSE) ili samo kičmena moždina i mali mozak (PRP).[20] Drugi pristup uključuje inserciju ekspanzije GAA u prvi intron mišjeg gena FXN, koji bi trebao inhibirati proizvodnju frataksina, baš kao i kod ljudi. Miševi koji su homozigotni za ovaj modificirani gen nazivaju se KIKI (skr. od eng.knock-in knock-in), a složeni heterozigoti nastali križanjem KIKI miševa s frataksinom – KIKO (skr. eng.knockout in knock-out). Međutim, čak i miševi KIKO i dalje eksprimiraju 25-36% normalne razine frataksina i pokazuju vrlo blage simptome. Konačni pristup uključuje stvaranje transgenih miševa sa GAA proširenom verzijom gena ljudskog frataksina. Ovi miševi se zovu YG22R (jedna GAA sekvenca od 190 ponavljanja) i YG22R (dvije GAA sekvence od 90 i 190 ponavljanja). Ovi miševi pokazuju simptome slične ljudskim pacijentima.[20]
Prekomjerna ekspresija frataksina u Drosophila pokazala je povećanje antioksidativnih sposobnosti, otpornost na povrede oksidativnog stresa i dugovječnost,[21] podupirući teoriju da je uloga frataksina zaštititi mitohondrije od oksidativnog stresa i nastalog ćelijskog oštećenja.
Fibroblasti iz miševskog modela fibroblasta pacijenata sa FRDA i FRDA pokazuju povećane razine dvolančanih prekida DNK.[22]Sistem isporuke gena za lentivirus je korišten za isporuku gena frataksina u FRDA model miša i ćelije ljudskih pacijenata, što je rezultiralo dugoročno obnovljenom ekspresijom frataksinske iRNK i proteina frataksina. Ova obnovljena ekspresija gena frataksina bila je praćena značajnim smanjenjem broja prekida dvostruke DNK.[22] Čini se da oštećeni frataksin u ćelijama FRDA uzrokuje smanjeni kapacitet za popravak oštećene DNK i to može doprinijeti neurodegeneraciji.[22]
^Adinolfi S, Iannuzzi C, Prischi F, Pastore C, Iametti S, Martin SR, Bonomi F, Pastore A (Apr 2009). "Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS". Nature Structural & Molecular Biology. 16 (4): 390–6. doi:10.1038/nsmb.1579. PMID19305405. S2CID205522816.
^Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (Oct 1996). "Clinical and genetic abnormalities in patients with Friedreich's ataxia". The New England Journal of Medicine. 335 (16): 1169–75. doi:10.1056/NEJM199610173351601. PMID8815938.
^Koutnikova H, Campuzano V, Foury F, Dollé P, Cazzalini O, Koenig M (Aug 1997). "Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin". Nature Genetics. 16 (4): 345–51. doi:10.1038/ng0897-345. PMID9241270. S2CID5883249.
^Pan X, Ding Y, Shi L (Nov 2009). "The roles of SbcCD and RNaseE in the transcription of GAA x TTC repeats in Escherichia coli". DNA Repair. 8 (11): 1321–7. doi:10.1016/j.dnarep.2009.08.001. PMID19733517.
Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (Jun 1997). "Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin". Science. 276 (5319): 1709–12. doi:10.1126/science.276.5319.1709. PMID9180083.
Koutnikova H, Campuzano V, Foury F, Dollé P, Cazzalini O, Koenig M (Aug 1997). "Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin". Nature Genetics. 16 (4): 345–51. doi:10.1038/ng0897-345. PMID9241270. S2CID5883249.
Wilson RB, Roof DM (Aug 1997). "Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue". Nature Genetics. 16 (4): 352–7. doi:10.1038/ng0897-352. PMID9241271. S2CID22652291.
Rötig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (Oct 1997). "Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia". Nature Genetics. 17 (2): 215–7. doi:10.1038/ng1097-215. PMID9326946. S2CID23151137.
Jiralerspong S, Liu Y, Montermini L, Stifani S, Pandolfo M (1997). "Frataxin shows developmentally regulated tissue-specific expression in the mouse embryo". Neurobiology of Disease. 4 (2): 103–13. doi:10.1006/nbdi.1997.0139. PMID9331900. S2CID6520439.
Zühlke C, Laccone F, Cossée M, Kohlschütter A, Koenig M, Schwinger E (Jul 1998). "Mutation of the start codon in the FRDA1 gene: linkage analysis of three pedigrees with the ATG to ATT transversion points to a unique common ancestor". Human Genetics. 103 (1): 102–5. doi:10.1007/s004390050791. PMID9737785. S2CID26999143.
Forrest SM, Knight M, Delatycki MB, Paris D, Williamson R, King J, Yeung L, Nassif N, Nicholson GA (Aug 1998). "The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene". Neurogenetics. 1 (4): 253–7. doi:10.1007/s100480050037. PMID10732799. S2CID7463903.