Kod ljudi, tau proteini se češće nalaze u neuronima nego u neneuronskim ćelijama. Jedna od glavnih funkcija tau-a je moduliranje stabilnosti aksonskihmikrotubula.[10][12] Ostali sustemskiproteini povezani sa mikrotubulama (MAP) mogu obavljati slične funkcije, kao što je predloženu u eksperimentu sa tau nokaut-miševima, koji nisu pokazali abnormalnosti u razvoju mozga – moguće zbog kompenzacije nedostatka tau od strane drugih MAP-ova.[13][14][15]
Iako je tau prisutan u dendritima na niskim nivoima, gdje je uključen u postsinapsne skele,[16] aktivan je prvenstveno u distalnim dijelovima aksona, gdje pruža stabilizaciju mikrotubula, ali i fleksibilnost po potrebi. Tau proteini komuniciraju s tubulinom, kako bi stabilizirali mikrotubule i u njima promovirali skupljanje tubulina.[10] Tau ima dva načina za kontrolu stabilnosti mikrotubula: izoforme i fosforilacija.
Tau je negativni regulator translacije proteina i u Drosophila[12] i moždanoj gangliji kod ljudi.[18] Njegovo vezanje za ribosome, rezultira oštećenjem ribosomske funkcije, smanjenjem sinteza proteina i promijenjenom u funkciji funkciji sinapsi.[12][18] Tau specifično komunicira s nekoliko ribosomskih proteina, uključujući presudni regulator translacije rpS6.[19]
Primarna nećelijska funkcija tau-a je negativna reguliranje dugoročnog pamćenja[12] i olakšavanje navikavanja (oblik neasocijativnog učenja),[12] dvije više i integrirane fiziološke funkcije. Budući da je regulacija tau-a presudna za pamćenje, ovo bi moglo objasniti vezu između tauopatija i kognitivnih oštećenja.
Kod miševa, dok su prijavljeni sojevi nokaut-sojevi bez otvorenog fenotipa u mladosti,[13][20][21] kad ostare, pokazuju određenu mišićnu slabost, hiperaktivnost i oštećenje uslovljavanja straha.[22] Međutim, ni prostorno učenje kod miševa,[22][23][24] ni na kratkotrajnu memoriju (učenje) u Drosophila[12] izgleda da ne utiče odsustvo tau-a.
Pored toga, tau nokaut-miševi imaju abnormalan ciklus spavanja i budnosti, s povećanim periodima budnosti i smanjenim nebrzih pokreta oka (NREM) tokom spavanja.[25]
U ljudi, MAPT gen za kodiranje tau proteina nalazi se na hromosomu 17, pozicija q21, koji sadrži 16 egzona.[27] Glavni tau protein u ljudskom mozgu je kodiran iz 11 egzona. Egzoni 2, 3 i 10 su alternativno prerađeni u šest tau izoformi.[28] U ljudskom mozgu, tau proteini čine porodicu od šest izoformi s rasponom od 352–441 aminokiselina. Tau izoforme su različite u nuli, jednom ili dva inserta od 29 aminokiselina na N-terminalnom dijelu (egzoni 2 i 3) i tri ili četiri regije ponavljanja na C-terminalnom dijelu (egzon 10). Dakle, najduža izoforma u CNS-u ima četiri ponavljanja (R1, R2, R3 i R4) i dva inserta (ukupno 441 aminokiselina), dok najkraća izoforma ima tri ponavljanja (R1, R3 i R4) i bez insercija (ukupno 352 aminokiseline).
Gen MAPT ima dvije haplogrupe, H1 i H2, u kojima se gen pojavljuje u obrnutim orijentacijama. Haplogrupa H2 česta je samo u Evropi i kod ljudi koji imaju evropsko porijeklo. Čini se da je haplogrupa H1 povezana s povećanom vjerovatnoćom određenih demencija, poput Alzheimerove bolesti. Prisustvo obje haplogrupe u Europi znači da rekombinacija između obrnutih haplotipova može rezultirati nedostatkom jedne od funkcionalnih kopija gena, što rezultira urođenim defektima.[29][30][31][32]
Umoždanom tkivu čovjeka ima šest tau izoformi i razlikuju se po broju veznih domena. Tri izoforme imaju po tri domena vezanja, a ostale tri po četiri. Vezujući domeni nalaze se na karboksi-kraju proteina i pozitivno su nabijeni (omogućavajući mu da se veže za negativno nabijenu mikrotubulu). Izoforme sa četiri vezujuća domena bolje stabilizuju mikrotubule od onih sa tri vezivna domena. Tau je fosfoprotein sa 79 potencijalnih mjesta fosforilacije serina (Ser) i treonina (Thr) na najdužoj tau izoformi. Fosforilacija u normalnim tau proteinima zabilježena je na približno 30 od ovih mjesta.[34]
Fosforilaciju tau-a regulira mnoštvo kinaza, uključujući PKN, serin/treonin kinazu. Kada se PKN aktivira, fosforilira tau, što rezultira poremećajem organizacije mikrotubula.[35] Fosforilacija tau-a je također i razvojno regulirana. Naprimjer, fetusni tau je jače fosforiliran u embrionskomCNS-u kod odraslih.[36] Stepen fosforilacije u svih šest izoformi opada sa godinama usljed aktiviranja fosfataza.[37] Poput kinaza, i fosfataze imaju ulogu u regulaciji fosforilacije tau-a. Naprimjer, PP2A i PP2B su prisutni u moždanom tkivu čovjeka i imaju sposobnost defosforilacije Ser396.[38] Vezivanje ovih fosfataza za tau utiče na povezanost tau s mikrotubulama.
Predloženo je i da se fosforilacija tau-a regulira modifikacijom O - GlcNAc na različitim ostacima Ser i Thr.[39]
Akumulacija hiperfosforiliranog tau-a u neuronima povezana je sa neurofibrilnom degeneracijom.[40] Stvarni mehanizam širenja tau iz jedne ćelije u drugu nije dobro identificiran. Također, ostali mehanizmi, uključujući oslobađanje tau-a i toksičnost, nisu jasni. Kao tau agregati, zamjenjuje tubulin, što zauzvrat pojačava fibrilizaciju tau-a.[41] Predloženo je nekoliko metoda popagacije koje se javljaju sinapsnim kontaktom, kao što su proteini adhezije sinapanih ćelija, neuronska aktivnost i drugi sinapsnii i nesinapsni mehanizmi.[42] Mehanizam tau agregacije još uvijek nije u potpunosti razjašnjen, ali nekoliko faktora favorizira ovaj proces, uključujući fosforilaciju tau-a i ione cinka.[43][44]
Tau uključuje proces usvajanja i ispuštanja, koji je poznat kao sjetva. Za unos mehanizma tau proteina potrebno je prisustvo heparan-sulfat proteoglikana na ćelijskoj površini, gdje se događa makropinocitoza.[45] S druge strane, oslobađanje tau-a ovisi o neuronskoj aktivnosti. Mnogi faktori utiču na oslobađanje tau, naprimjer, tip izoformi ili mutacije MAPT-a koje mijenjaju vanćelijski nivo tau-a.[46] Prema Asaiju i njegovim kolegama, širenje tau proteina događa se iz entorinskog korteksa u hipokampusnu regiju, u ranim fazama bolesti. Također su sugerirali da je mikroglija također bila uključena u proces transporta, a njihova stvarna uloga još uvijek nije poznata.[47]
Toksične efekte, tau uzrokuje akumuliranjem unutar ćelija. U mehanizam toksičnosti uključeni su mnogi enzimi, kao što je PAR-1kinaza. Ovaj enzim stimulira fosforilaciju serina 262 i 356, što zauzvrat dovodi do aktiviranja drugih kinaza (GSK-3 i CDK5), koje uzrokuju fosfoentropiju, povezanu sa bolešću.[48] Na stupanj toksičnosti utiču različiti faktori, poput stupnja vezanja mikrotubula.[49][50] Toksičnost bi se mogla dogoditi i neurofibrilarni splet s (NFT), što dovodi do ćelijske smrti i kognitivnog pada.
Hiperfosforilacija tau proteina (tau inkluzije, pTau) može rezultirati samosastavljanjem sklopa uparenih spiralnih i ravnih niti, koje su uključene u patogenezuAlzheimerove bolesti, čeonosljepoočne demencije i druge tauopatije.[51] Svih šest tau izoforami prisutno je u često hiperfosforiliranom stanju u uparenim spiralnim nitima u mozgu osoba sa Alzheimerovom bolesti. U ostalim neurodegenerativnim bolestima zabilježeno je taloženje agregata obogaćenih određenim tau izoformama. Kada se pogrešno sklopi, ovaj inače vrlo rastvorljivi protein, može stvoriti izuzetno nerastvorljive agregate koji doprinose brojnim neurodegenerativnim bolestima. Tau protein ima direktan učinak na razgradnju živih ćelija uzrokovanu sklopovima koje formiraju i blokiraju sinapse živaca.[52]
Rodno specifična ekspresija gena tau u različitim regijama ljudskog mozga nedavno je uključena u rodne razlike u manifestacijama i riziku od tauopatija.[53] Neki aspekti funkcionisanja bolesti takođe ukazuju na to da ima neke sličnosti sa prionskim proteinima.[54]
^Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (oktobar 1989). "Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease". Neuron. 3 (4): 519–26. doi:10.1016/0896-6273(89)90210-9. PMID2484340. S2CID19627629.
^Shin RW, Iwaki T, Kitamoto T, Tateishi J (maj 1991). "Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer's disease brain tissues". Laboratory Investigation; A Journal of Technical Methods and Pathology. 64 (5): 693–702. PMID1903170.
^Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI (novembar 2010). "Tau protein: relevance to Parkinson's disease". The International Journal of Biochemistry & Cell Biology. 42 (11): 1775–8. doi:10.1016/j.biocel.2010.07.016. PMID20678581.
^ abcCleveland DW, Hwo SY, Kirschner MW (oktobar 1977). "Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin". Journal of Molecular Biology. 116 (2): 207–25. doi:10.1016/0022-2836(77)90213-3. PMID599557.
^Cleveland DW, Hwo SY, Kirschner MW (oktobar 1977). "Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly". Journal of Molecular Biology. 116 (2): 227–47. doi:10.1016/0022-2836(77)90214-5. PMID146092.
^Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, et al. (august 2010). "Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models". Cell. 142 (3): 387–97. doi:10.1016/j.cell.2010.06.036. PMID20655099. S2CID18776289.
^ abIkegami S, Harada A, Hirokawa N (februar 2000). "Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice". Neuroscience Letters. 279 (3): 129–32. doi:10.1016/s0304-3940(99)00964-7. PMID10688046. S2CID31204860.
^Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (decembar 1986). "Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2". Brain Research. 387 (3): 271–80. doi:10.1016/0169-328x(86)90033-1. PMID3103857.
^Sergeant N, Delacourte A, Buée L (januar 2005). "Tau protein as a differential biomarker of tauopathies". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1739 (2–3): 179–97. doi:10.1016/j.bbadis.2004.06.020. PMID15615637.
^Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S, et al. (septembar 2006). "Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability". Nature Genetics. 38 (9): 1032–7. doi:10.1038/ng1858. PMID16906163. S2CID38047848.
^Hardy J, Pittman A, Myers A, Gwinn-Hardy K, Fung HC, de Silva R, et al. (august 2005). "Evidence suggesting that Homo neanderthalensis contributed the H2 MAPT haplotype to Homo sapiens". Biochemical Society Transactions. 33 (Pt 4): 582–5. doi:10.1042/BST0330582. PMID16042549.
^Matsuo ES, Shin RW, Billingsley ML, Van deVoorde A, O'Connor M, Trojanowski JQ, Lee VM (oktobar 1994). "Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau". Neuron. 13 (4): 989–1002. doi:10.1016/0896-6273(94)90264-X. PMID7946342. S2CID40592137.
^Goedert M, Eisenberg DS, Crowther RA (juli 2017). "Propagation of Tau Aggregates and Neurodegeneration". Annual Review of Neuroscience. 40 (1): 189–210. doi:10.1146/annurev-neuro-072116-031153. PMID28772101.
^Nishimura I, Yang Y, Lu B (mart 2004). "PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila". Cell. 116 (5): 671–82. doi:10.1016/S0092-8674(04)00170-9. PMID15006350. S2CID18896805.
^Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, et al. (april 2005). "Tau phosphorylation in Alzheimer's disease: pathogen or protector?". Trends in Molecular Medicine. 11 (4): 164–9. doi:10.1016/j.molmed.2005.02.008. hdl:10316/4769. PMID15823754.
Goedert M, Crowther RA, Garner CC (maj 1991). "Molecular characterization of microtubule-associated proteins tau and MAP2". Trends in Neurosciences. 14 (5): 193–9. doi:10.1016/0166-2236(91)90105-4. PMID1713721. S2CID44928661.
Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, et al. (1995). "Hyperphosphorylation of tau in PHF". Neurobiology of Aging. 16 (3): 365–71, discussion 371–80. doi:10.1016/0197-4580(95)00027-C. PMID7566346. S2CID22471158.
Goedert M, Spillantini MG (juli 2000). "Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer's disease". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1502 (1): 110–21. doi:10.1016/S0925-4439(00)00037-5. PMID10899436.
Morishima-Kawashima M, Ihara Y (novembar 2001). "[Recent advances in Alzheimer's disease]". Seikagaku. The Journal of Japanese Biochemical Society. 73 (11): 1297–307. PMID11831025.
Blennow K, Vanmechelen E, Hampel H (2002). "CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer's disease". Molecular Neurobiology. 24 (1–3): 87–97. doi:10.1385/MN:24:1-3:087. PMID11831556. S2CID24891421.
Ingram EM, Spillantini MG (decembar 2002). "Tau gene mutations: dissecting the pathogenesis of FTDP-17". Trends in Molecular Medicine. 8 (12): 555–62. doi:10.1016/S1471-4914(02)02440-1. PMID12470988.
Pickering-Brown S (2004). "The tau gene locus and frontotemporal dementia". Dementia and Geriatric Cognitive Disorders. 17 (4): 258–60. doi:10.1159/000077149. PMID15178931. S2CID27693523.
van Swieten JC, Rosso SM, van Herpen E, Kamphorst W, Ravid R, Heutink P (2004). "Phenotypic variation in frontotemporal dementia and parkinsonism linked to chromosome 17". Dementia and Geriatric Cognitive Disorders. 17 (4): 261–4. doi:10.1159/000077150. PMID15178932. S2CID36197015.
Kowalska A, Jamrozik Z, Kwieciński H (2004). "Progressive supranuclear palsy--parkinsonian disorder with tau pathology". Folia Neuropathologica. 42 (2): 119–23. PMID15266787.
Rademakers R, Cruts M, van Broeckhoven C (oktobar 2004). "The role of tau (MAPT) in frontotemporal dementia and related tauopathies". Human Mutation. 24 (4): 277–95. doi:10.1002/humu.20086. PMID15365985. S2CID28578030.
Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, et al. (april 2005). "Tau phosphorylation in Alzheimer's disease: pathogen or protector?". Trends in Molecular Medicine. 11 (4): 164–9. doi:10.1016/j.molmed.2005.02.008. hdl:10316/4769. PMID15823754.
Hardy J, Pittman A, Myers A, Gwinn-Hardy K, Fung HC, de Silva R, et al. (august 2005). "Evidence suggesting that Homo neanderthalensis contributed the H2 MAPT haplotype to Homo sapiens". Biochemical Society Transactions. 33 (Pt 4): 582–5. doi:10.1042/BST0330582. PMID16042549.
Deutsch SI, Rosse RB, Lakshman RM (decembar 2006). "Dysregulation of tau phosphorylation is a hypothesized point of convergence in the pathogenesis of alzheimer's disease, frontotemporal dementia and schizophrenia with therapeutic implications". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 30 (8): 1369–80. doi:10.1016/j.pnpbp.2006.04.007. PMID16793187. S2CID6848053.
Roder HM, Hutton ML (april 2007). "Microtubule-associated protein tau as a therapeutic target in neurodegenerative disease". Expert Opinion on Therapeutic Targets. 11 (4): 435–42. doi:10.1517/14728222.11.4.435. PMID17373874. S2CID36430988.