Somatostatin ima dva aktivna oblika, nastala alternativnim cijepanjem jednog preproteina: jednog koji se sastoji od 14 aminokiselina (prikazan u infoboksu desno) i drugog koji se sastoji od 28 aminokiselina.[6][7]
Među kičmenjacima, postoji šest različitih somatostatinskig gena, označenih sa SS1, SS2, SS3, SS4, SS5 i SS6.[8]Riba zebra ima svih šest.[8] Šest različitih gena, zajedno s pet različitih receptora somatostatina, omogućavaju somatostatinu veliki raspon funkcija.[9]
Ljudi imaju samo somatostatinski gen SST.[10][11][12]
Somatostatin oslobođen u piloričnom antrumu putuje preko portnog venskog sistema do srca, a zatim ulazi u sistemsku cirkulaciju kako bi stigao do mjesta na kojima će izvršiti svoje inhibitorne efekte. Pored toga, oslobađanje somatostatina iz delta ćelija može djelovati i na parakrini način.[13]
U želucu, somatostatin djeluje direktno na parijetalne ćelije koje stvaraju kiselinu, putem G-protein spregnutog receptora (koji inhibira adenilat-ciklazu, antagonizirajući na taj način efikasan stimulativni efekat histamina) radi smanjenja lučenja kiseline.[13] Somatostatin can also indirectly decrease stomach acid production by preventing the release of other hormones, including gastrin and histamine which effectively slows down the digestive process.
Somatostatin takođe može posredno smanjiti proizvodnju želučane kiseline sprečavanjem oslobađanja drugih hormona, uključujući gastrin i histamin što efikasno usporava probavni proces.
Somatostatin nastaju u neuroendokrinim neuronima ventromedijalnog jezgrahipotalamusa. Ovi neuroni projiciraju se u srednju eminenciju, gdje se somatostatin oslobađa iz neurosekretornih nervnih završetaka u hipotalamohipofiznom sistemu kroz aksone neurona. Somatostatin se zatim prenosi u prednji režanj hipofize, gdje inhibira izlučivanje hormona rasta iz somatotropnih ćelija. Somatostatinski neuroni u periventrikularnom jezgru imaju negativne povratne efekte hormona rasta na njegovo oslobađanje; somatostatinski neuroni reagiraju na visoke koncentracije hormona rasta i somatomedina, povećavajući oslobađanje somatostatina, tako smanjujući brzinu izlučivanja hormona rasta.
Somatostatin također proizvodi nekoliko drugih populacija koje se projiciraju centralno, tj. na druga područja mozga, a somatostatinski receptori se ispoljavaju na mnogim različitim mjestima u mozgu. Konkretno, populacije somatostatinskih neurona nastaju u arkuatnom jezgru i moždanom deblu u jezgru solitarnog trakta.
Somatostatin je klasificirvan kao inhibicijski hormon,[6] i induciran je niskim pH. Njegove akcije se šire na različite dijelove tijela. Otpuštanje somatostatina inhibira vagusni nerv.[14]
Oktreotid (robna marka Sandostatin, Novartis Pharmaceuticals) je oktapeptid koji farmakološki oponaša prirodni somatostatin, iako je snažniji inhibitor hormona rasta, glukagona i inzulina nego prirodni hormon i ima znatno duži poluživot (oko 90 minuta, u poređenju sa 2-3 minute za somatostatin). Pošto se slabo apsorbira iz crijeva, daje se parenteralno (supkutano, intramuskularno ili intravenski). Indicirano je za simptomatsko liječenjekarcinoidni sindrom i akromegaliju. Također je pronađena povećana upotreba kod policističnih bolesti jetre i bubrega.
Lanreotid (Somatuline, Ipsen Pharmaceuticals) je lijek koji se koristi u liječenju akromegalije i simptoma uzrokovanih neuroendokrinim tumorima, a ponajviše karcinoidnog sindroma. To je analog somatostatina, dugog djelovanja, poput oktreotida. Dostupan je u nekoliko zemalja, uključujući Ujedinjeno Kraljevstvo, Australiju i Kanadu, a američka Uprava za hranu i lijekove odobrila na prodaju 30. avgusta 2007.
Pasireotid, prodaje se pod robnom markom Signifor, lijek sirota odobren u Sjedinjenim Državama i Europskoj uniji za liječenje Cushingove bolesti kod pacijenata koji nisu ili su podobni za hiruršku terapiju. Razvio ga je Novartis. Pasireotid je somatostatin analog sa 40-puta povećanim afinitetom prema somatostatinskom receptoru 5 u poređenju s drugim somatostatinskim analozima.
Kod kičmenjaka, otkriveno je šest somatostatinskih gena. Sadašnja predložena historija o tome kako su nastalo ovih šest gena temelji se na tri slučaja umnožavanja čitavog genoma koji su se dogodili u evoluciji kičmenjanjaka, zajedno s lokalnim kopiranjima kod riba Teleostea. Tiokom prvoga umnožavanja čitavog genoma (1R) gen za somatostatin je dupliran da bi se stvorili SS1 i SS2 . Ova dva gena umnožena su tokom drugog događaja umnožavanja cijelog genoma (2R), da bi stvorili četiri nova somatostatinska gena:SS1, SS2, SS3 i jedan gen koji je izgubljen tokom evolucije kičmenjaka. Tetrapoda su zadržale SS1 (također poznat kao SS-14 i SS-28) i SS2 (također poznat kao kortistatin), nakon razlaza loza u grupama Sarcopterygii i Actinopterygii. U teleostnih riba, SS1, SS2 i SS3 duplirani su tokom trećeg događaja umnožavanja čitavog genoma (3R) da bi se stvorili SS1, SS2, SS4, SS5 i dva gena koja su izgubljena tokom evolucije teleostea. SS1 i SS2 prošli su putem lokalnih kopija da bi stvorili SS6 i SS3'.[8]
^ abcLiu Y, Lu D, Zhang Y, Li S, Liu X, Lin H (septembar 2010). "The evolution of somatostatin in vertebrates". Gene. 463 (1–2): 21–8. doi:10.1016/j.gene.2010.04.016. PMID20472043.
Florio T, Schettini G (septembar 2001). "[Somatostatin and its receptors. Role in the control of cell proliferation]". Minerva Endocrinologica. 26 (3): 91–102. PMID11753230.
Yamada Y, Reisine T, Law SF, Ihara Y, Kubota A, Kagimoto S, Seino M, Seino Y, Bell GI, Seino S (decembar 1992). "Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase". Molecular Endocrinology. 6 (12): 2136–42. doi:10.1210/me.6.12.2136. PMID1337145.
Panetta R, Greenwood MT, Warszynska A, Demchyshyn LL, Day R, Niznik HB, Srikant CB, Patel YC (mart 1994). "Molecular cloning, functional characterization, and chromosomal localization of a human somatostatin receptor (somatostatin receptor type 5) with preferential affinity for somatostatin-28". Molecular Pharmacology. 45 (3): 417–27. PMID7908405.
Demchyshyn LL, Srikant CB, Sunahara RK, Kent G, Seeman P, Van Tol HH, Panetta R, Patel YC, Niznik HB (juni 1993). "Cloning and expression of a human somatostatin-14-selective receptor variant (somatostatin receptor 4) located on chromosome 20". Molecular Pharmacology. 43 (6): 894–901. PMID8100352.
Kaupmann K, Bruns C, Hoyer D, Seuwen K, Lübbert H (septembar 1993). "Distribution and second messenger coupling of four somatostatin receptor subtypes expressed in brain". FEBS Letters. 331 (1–2): 53–9. doi:10.1016/0014-5793(93)80296-7. PMID8405411.
Barnea A, Roberts J, Ho RH (januar 1999). "Evidence for a synergistic effect of the HIV-1 envelope protein gp120 and brain-derived neurotrophic factor (BDNF) leading to enhanced expression of somatostatin neurons in aggregate cultures derived from the human fetal cortex". Brain Research. 815 (2): 349–57. doi:10.1016/S0006-8993(98)01098-1. PMID9878821.
Brakch N, Lazar N, Panchal M, Allemandou F, Boileau G, Cohen P, Rholam M (februar 2002). "The somatostatin-28(1-12)-NPAMAP sequence: an essential helical-promoting motif governing prosomatostatin processing at mono- and dibasic sites". Biochemistry. 41 (5): 1630–9. doi:10.1021/bi011928m. PMID11814357.
Oomen SP, van Hennik PB, Antonissen C, Lichtenauer-Kaligis EG, Hofland LJ, Lamberts SW, Löwenberg B, Touw IP (februar 2002). "Somatostatin is a selective chemoattractant for primitive (CD34(+)) hematopoietic progenitor cells". Experimental Hematology. 30 (2): 116–25. doi:10.1016/S0301-472X(01)00772-X. PMID11823046.
Simonetti M, Di BC (februar 2002). "Structural motifs in the maturation process of peptide hormones. The somatostatin precursor. I. A CD conformational study". Journal of Peptide Science. 8 (2): 66–79. doi:10.1002/psc.370. PMID11860030.