En física de partículas, un fermión de Majorana (tamén coñecido como partícula de Majorana) é un fermión que é a súa propia antipartícula. Estas partículas denomínanse así en homenaxe ao físico Ettore Majorana, que propuxo este modelo establecendo a ecuación que tamén leva o seu nome. Este termo utilízase ás veces en oposición aos fermións de Dirac (ou partículas de Dirac), que teñen unha antipartícula diferente de si mesmos.
En 1928, Paul Dirac publicou o artigo que contén a ecuación de Dirac. Motivado polo estudo dos electróns, o artigo xeneraliza a ecuación ás partículas de spin 1/2, pero require factores imaxinarios. En 1937, Majorana revisa a ecuación de Dirac e acha unha interpretación con factores reais.[1] Aos traballos de Majorana non se lles prestou moita atención durante case 20 anos, cando a descuberta dos neutrinos en 1956 conduciu a reestudar os seus resultados. Desde entón, os traballos de Majorana están con regularidade no punto de mira da investigación física.[2]
Para que unha partícula sexa a súa propia antipartícula debe ter as seguintes propiedades:
Non se documentou na natureza ningún fermión de Majorana, segundo os experimentos e as conclusións científicas, ata finais de 2011, aínda que é teoricamente posible observalos en forma de quasipartícula en experimentos de supercondutividade.
En febreiro de 2012, o equipo do físico Leo Kouwenhoven, da Universidade de Tecnoloxía de Delft, nos Países Baixos, realizou un experimento con nanofíos de aliaxe semicondutora indio-antimonio conectados a un circuíto eléctrico por un contacto en ouro nun lado e un superconductor no outro. Créase un débil campo magnético e mídese a condutancia eléctrica dos nanofíos a diferentes intensidades.[3] Kouwenhoven segue a ser cauteloso, pero cre que os resultados do experimento, é dicir, a produción dun par de fermións de Majorana compostos por electróns acoplados a ocos, son moi compatibles coa descuberta de quasipartículas cuxo comportamento reproduce o dos fermións de Majorana reais.[4]
En 2014, un equipo da Universidade de Princeton afirmou ter medido, utilizando un microscopio de efecto túnel a baixa temperatura, estados ligados formando unha quasipartícula de Majorana nos bordos dunha cadea de átomos de ferro na superficie dun cristal de chumbo superconductor.[5][6][7]
O 4 de abril de 2016, investigadores da Universidade de Cambridge anunciaron a proba da existencia de fermións Majorana.[8]
O neutrino podería ser tanto un fermión de Majorana como un fermión de Dirac. Se é un fermión de Majorana, a dobre desintegración beta sen neutrino é posible; o experimento do Neutrino Ettore Majorana Observatory (NEMO), entre 2003 e 2011, procurou a verificación desta hipótese. Isto levou á conclusión de que se o neutrino ten unha masa, esta a ser obrigatoriamente inferior a 1 eV. Un experimento posterior chamado Super-NEMO debe permitir sondar masas ontinuación por baixo do electrón-volt.[9]
O hipotético neutralino do modelo supersimétrico, utilizado notablemente na teoría das supercordas, é un fermión de Majorana.
Fotóns, bosóns Z e gravitons (estes últimos hipotéticos) son a súa propia antipartícula, pero non se poden cualificar de fermións de Majorana. Son bosóns para os cales a distinción entre fermións de Dirac e de Majorana non ten sentido ningún.