Định lý Cayley–Bacharach

Trong hình vẽ cho chín điểm, một trường hợp đặc biệt, khi cả hai đường bậc ba C1C2 suy biến thành ba đường thằng

Định lý Cayley–Bacharach là một định lý toán học nói về tính chất của các đường cong bậc ba trong mặt phẳng xạ ảnh P2. Định lý có nội dụng như sau:

Cho hai đường bậc ba C1C2 trong mặt phẳng xạ ảnh gặp nhau tại 9 điểm, tất cả chín điểm này đều nằm trong trường đóng đại số. Khi đó tất cả các đường bậc ba đi qua 8 điểm thì cũng đi qua điểm thứ 9.[1]

Ứng dụng

[sửa | sửa mã nguồn]
  • Định lý này là mở rộng của định lý Pascal. Thật vậy nếu như ta cho hai đường thẳng bậc ba suy biến thành hai cặp ba đường thẳng, ba cặp đường thẳng này giao nhau tại 9 điểm nếu như có 6 điểm nằm trên một đường conic thì ba điểm còn lại phải nằm trên một đường thẳng (vì đường bậc ba có thể suy biến thành một đường conic và một đường thẳng).
  • Định lý này là mở rộng của định lý Pappus (6 điểm). Thật vậy nếu như ta cho hai đường thẳng bậc ba suy biến thành ba cặp đường thẳng, ba cặp đường thẳng này giao nhau tại 9 điểm nếu như có 6 điểm nằm trên hai đường thẳng thì ba điểm còn lại phải nằm trên một đường thẳng (vì đường bậc ba có thể suy biến thành ba đường thẳng).
  • Định lý này có nhiều ứng dụng khác.

Chú thích

[sửa | sửa mã nguồn]
  1. ^ A. Cayley, On the Intersection of Curves (published by Cambridge University Press, Cambridge, 1889).

Tham khảo

[sửa | sửa mã nguồn]
  • M. Chasles, Traité des sections coniques, Gauthier-Villars, Paris, 1885.
  • Bacharach, I. (1886), “Ueber den Cayley'schen Schnittpunktsatz”, Mathematische Annalen, Springer Berlin / Heidelberg, 26: 275–299, doi:10.1007/BF01444338, ISSN 0025-5831
  • E. D. Davis, A.V. Geramita, and F. Orecchia, Gorenstein algebras and Cayley–Bacharach theorem, Proceedings of the American Mathematical Society 93 (1985) 593–597.
  • D. Eisenbud, M. Green, and J. Harris, Cayley–Bacharach theorems and conjectures, Bulletin of the American Mathematical Society 33 (1996) 295—324.
  • Robin Hartshorne, Algebraic geometry, chapter 5, section 4 (The cubic surface in P3), Corollary 4.5.

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Nhìn lại cú bắt tay vĩ đại giữa Apple và NVIDIA
Nhìn lại cú bắt tay vĩ đại giữa Apple và NVIDIA
Trong một ngày đầu năm 2000, hai gã khổng lồ công nghệ, Apple và NVIDIA, bước chân vào một cuộc hôn nhân đầy tham vọng và hứa hẹn
Câu truyện đằng sau đôi tất ướt và điệu nhảy của Ayaka
Câu truyện đằng sau đôi tất ướt và điệu nhảy của Ayaka
Story Quest của Ayaka có một khởi đầu rất chậm, đa số là những cuộc hội thoại giữa Ayaka và các NPC trong thành Inazuma
Nhân vật Aoi Todo trong Jujutsu Kaisen
Nhân vật Aoi Todo trong Jujutsu Kaisen
Aoi Todo là một thanh niên cao lớn, có chiều cao tương đương với Satoru Gojo. Anh ta có thân hình vạm vỡ, vạm vỡ và làn da tương đối rám nắng
Kẻ đứng đầu abyss và nguyên nhân của toàn bộ vấn đề đang diễn ra ở Teyvat
Kẻ đứng đầu abyss và nguyên nhân của toàn bộ vấn đề đang diễn ra ở Teyvat
Nhắc lại đại khái về lịch sử Teyvat, xưa kia nơi đây được gọi là “thế giới cũ” và được làm chủ bởi Seven Sovereigns