Độ cong

Trong hình học, độ cong thể hiện sự lệch hướng tại một điểm trên đường cong, mặt cong hay không gian Riemann nói chung.

Độ cong của một đường cong

[sửa | sửa mã nguồn]

Định nghĩa

[sửa | sửa mã nguồn]

Theo Cauchy, tâm đường cong C tại một điểm là giao điểm của hai pháp tuyến vô cùng gần nhau, và bán kính cong là khoảng cách từ điểm đó đến C. Và độ cong chính là nghịch đảo của bán kính cong .

Gọi là độ dài dường cong mà 2 pháp tuyến cách nhau, và là góc hợp bởi 2 pháp tuyến. Ta có định nghĩa khác về độ cong:

Tính độ cong của một đường cong phẳng

[sửa | sửa mã nguồn]

Trong hệ tọa độ Descartes

[sửa | sửa mã nguồn]
Xem thêm: Hệ tọa độ Descartes

Nếu đồ thị được cho dưới dạng hệ phương trình tham số , từ phần trên ta có định nghĩa:

là góc hợp bởi 2 pháp tuyến, ta cũng có thể coi nó như góc lệch giữa 2 đường tiếp tuyến. Từ đó ta có thể định nghĩa góc tiếp tuyến của đường cong.

Lấy đạo hàm 2 vế theo tham số ta được:

Kết hợp các kết quả thu được ta có:

Nếu đồ thị được cho bởi một hàm số thì độ cong được tính như sau:

Trong hệ tọa độ cực

[sửa | sửa mã nguồn]
Xem thêm: Hệ tọa độ cực

Nếu đồ thị được cho bởi một hàm số thì độ cong được tính như sau:

Đường thẳng
[sửa | sửa mã nguồn]

Đường thẳng hay sẽ có độ cong được tính như sau:

Áp dụng công thức ta có:

hay công thức:

Vậy độ cong của một đường thẳng bằng 0.

Đường tròn
[sửa | sửa mã nguồn]

Đường tròn hay sẽ có độ cong được tính như sau:

Áp dụng công thức ta có:

hay công thức:

Vậy độ cong của một đường tròn là nghịch đảo bán kính của nó.

Các đường khác
[sửa | sửa mã nguồn]
  • Đường parabol sẽ có độ cong được tính như sau:

Áp dụng công thức ta có:

  • Đường ellipse sẽ có độ cong được tính như sau:

Áp dụng công thức ta có:

với là tâm sai của ellipse.

Độ cong của một đường cong ghềnh

[sửa | sửa mã nguồn]

Độ cong của một đường cong ghềnh (trong không gian 3 chiều) có hệ phương trình tham số trong hệ tọa độ Descartes được tính theo công thức

Độ cong của một mặt cong

[sửa | sửa mã nguồn]

Độ cong Gauss

[sửa | sửa mã nguồn]

Độ cong trung bình

[sửa | sửa mã nguồn]

Độ cong của một không gian

[sửa | sửa mã nguồn]

Tenxơ độ cong Riemann

[sửa | sửa mã nguồn]

Tenxơ độ cong Ricci

[sửa | sửa mã nguồn]

Tham khảo

[sửa | sửa mã nguồn]

John M. Lee, Introduction to Riemannian manifolds

Chúng tôi bán
Bài viết liên quan
Chân dung Drew Gilpin Faust - Hiệu trưởng Đại học Harvard
Chân dung Drew Gilpin Faust - Hiệu trưởng Đại học Harvard
Đó là những lời khẳng định đanh thép, chắc chắn và đầy quyền lực của người phụ nữ đang gánh trên vai ngôi trường đại học hàng đầu thế giới
Một số nickname, từ ngữ ấn tượng
Một số nickname, từ ngữ ấn tượng
Gợi ý một số nickname, từ ngữ hay để đặt tên ingame hoặc username ở đâu đó
Tìm hiểu về Puskas Arena - Sân vận động lớn nhất ở thủ đô Budapest của Hungary
Tìm hiểu về Puskas Arena - Sân vận động lớn nhất ở thủ đô Budapest của Hungary
Đây là một sân vận động tương đối mới, được bắt đầu xây dựng vào năm 2016 và hoàn thành vào cuối năm 2019
Quân đội Israel - Nguồn Gốc và Sức Mạnh
Quân đội Israel - Nguồn Gốc và Sức Mạnh
Đây là lời tuyên chiến đầu tiên của Israel kể từ năm 1973, tỏ rõ ý định muốn chơi tới cùng với Hamas và chắc chắn sẽ giành được chiến thắng chung cuộc.