Trong hình học vi phân, một đa tạp Riemann hoặc không gian Riemann(M, g) là một đa tạpthực trơn M được trang bị với một tích vô hướnggp xác định dương trên không gian tiếp tuyến TpM tại mỗi điểm p. Theo qui ước, g là một tích vô hướng trơn. Tức là với mọi bản đồ trơn (U, x) trênM, n2 hàm
là các hàm trơn. Tương tự, ta có thể xét các mêtric Riemann Lipschitz hoặc các mêtric Riemann đo được, vân vân.
Họ các tích vô hướng gp nói trên được gọi là mêtríc Riemann (hay tenxơ mêtric Riemann). Những thuật ngữ này được đặt theo tên nhà toán học người Đức Bernhard Riemann. Ngành nghiên cứu về các đa tạp Riemann được gọi là hình học Riemann.
Một một (tenxơ) mêtríc Riemann cho phép định nghĩa một số khái niệm hình học trên các đa tạp Riemann, chẳng hạn như góc tại một giao điểm, chiều dài đường cong, diện tích bề mặt và các đại lương chiều cao tương ứng (thể tích, v.v.), độ cong ngoại biên của các đa tạp con, và độ cong nội tại của chính đa tạp lớn.
Nếu là một đa tạp Riemann liên thông (và do đó liên thông cung do là không gian Euclid địa phương), ta có thể định nghĩa khoảng cách Riemann giữa hai điểm như là infimum của các độ dài cung nối và .[4] Không gian metric cảm sinh có chung tô pô với .[5]
Cô nàng cáu giận Kenjaku vì tất cả những gì xảy ra trong Tử Diệt Hồi Du. Cô tự hỏi rằng liệu có quá tàn nhẫn không khi cho bọn họ sống lại bằng cách biến họ thành chú vật