Điểm Fermat

Hai điểm Fermat của tam giác ABC được ký hiệu là X(13) và X(14)

Trong hình học phẳng, điểm Fermat của một tam giác, cũng được gọi là điểm Torricelli hoặc điểm Fermat-Torricelli, là một điểm sao cho tổng khoảng cách từ điểm đó đến các đỉnh của tam giác là bé nhất. Vấn đề này đặt ra bởi Fermat trong một lá thư gửi Evangelista Torricelli, và Evangelista Torricelli đã đưa ra giải pháp. Có hai điểm Fermat gọi là điểm Fermat trong và ngoài của tam giác, trong bách khoa toàn thư về các tâm của tam giác lần lượt được ký hiệu là . [1][2] Điểm Fermat đưa ra một giải pháp để giải quyết vấn đề cây Steiner cho ba điểm.

Dựng điểm Fermat

[sửa | sửa mã nguồn]
  • Cách 1: Dựng ra phía ngoài (hoặc vào phía trong) tam giác các tam giác đều khi đó đồng quy tại điểm Fermat trong (hoặc ngoài) của tam giác .
  • Cách 2 Dựng ra phía ngoài (hoặc vào phía trong) tam giác các tam giác đều khi đó các đường tròn đồng quy tại điểm Fermat trong (hoặc ngoài) của tam giác .

Tính chất

[sửa | sửa mã nguồn]

Điểm Fermat có nhiều tính chất đặc biệt:

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ X(13) = 1st ISOGONIC CENTER (FERMAT POINT, TORRICELLI POINT)
  2. ^ X(14) = 2nd ISOGONIC CENTER
  3. ^ X(6103) = RADICAL CENTER OF THE DAO-MOSES-TELV CIRCLE, CIRCUMCIRCLE, AND NINE-POINT CIRCLE
  4. ^ X(5607) = CENTER OF 1st POHOATA-DAO-MOSES CIRCLE
  5. ^ X(5608) = CENTER OF 2nd POHOATA-DAO-MOSES CIRCLE
  6. ^ “Yiu, Paul. "The circles of Lester, Evans, Parry, and their generalizations." Forum Geometricorum 10, 175–209, 2010” (PDF). Bản gốc (PDF) lưu trữ ngày 7 tháng 10 năm 2021. Truy cập ngày 17 tháng 11 năm 2015.

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Giới thiệu TV Series: Ragnarok (2020) - Hoàng hôn của chư thần
Giới thiệu TV Series: Ragnarok (2020) - Hoàng hôn của chư thần
Một series khá mới của Netflix tuy nhiên có vẻ do không gặp thời
Distinctiveness quan trọng như thế nào?
Distinctiveness quan trọng như thế nào?
Tức là thương hiệu nào càng dễ mua, càng được nhớ đến trong nhiều bối cảnh mua hàng khác nhau thì sẽ càng được mua nhiều hơn và do đó có thị phần càng lớn
Tây Du Hắc Tích – Nhị Lang Thần và tầm vóc câu chuyện Game Science muốn kể
Tây Du Hắc Tích – Nhị Lang Thần và tầm vóc câu chuyện Game Science muốn kể
Với những ai đã hoàn thành xong trò chơi, hẳn sẽ khá ngạc nhiên về cái kết ẩn được giấu kỹ, theo đó hóa ra người mà chúng ta tưởng là Phản diện lại là một trong những Chính diện ngầm
Phổ hiền Rien: Lãnh đạo Lord Tensen - Jigokuraku
Phổ hiền Rien: Lãnh đạo Lord Tensen - Jigokuraku
Rien (Từ điển, Bính âm: Lián), còn được gọi là biệt danh Fugen Jōtei (Từ điển, Nghĩa đen: Shangdi Samantabhadra), là một Sennin cấp Tensen, người từng là người cai trị thực sự của Kotaku, tổ tiên của Tensens, và là người lãnh đạo của Lord Tensen.