Chứng minh của Wiles về Định lý cuối cùng của Fermat

Chứng minh của Wiles về định lý cuối cùng của Fermatchứng minh toán học của nhà toán học người Anh Andrew Wiles về một trường hợp đặc biệt của định lý Module đối với đường cong elip. Cùng với định lý Ribet, nó cung cấp một chứng minh cho Định lý cuối cùng của Fermat. Cả Định lý cuối cùng của Fermat và định lý Module hầu như đều được các nhà toán học đương thời coi là không thể chứng minh được, có nghĩa là chúng được cho là không thể chứng minh bằng cách sử dụng kiến ​​thức hiện tại.[1]:203–205, 223, 226

Chứng minh lần đầu tiên được công bố bởi Wiles vào ngày 23 tháng 6 năm 1993 tại một bài giảng ở Cambridge với tiêu đề "Các dạng mô-đun, đường cong elliptic và biểu diễn Galois".[2] Tuy nhiên vào tháng 9 năm 1993, chứng minh được phát hiện là có sai sót. Một năm sau, vào ngày 19 tháng 9 năm 1994, vào thời điểm được ông gọi là "thời điểm quan trọng nhất trong cuộc đời làm việc của ông", Wiles tình cờ phát hiện ra một tiết lộ cho phép ông sửa lại bằng chứng làm hài lòng cộng đồng toán học. Chứng minh sửa chữa được xuất bản vào năm 1995.[3]

Chứng minh của Wiles sử dụng nhiều kỹ thuật từ hình học đại sốlý thuyết số, và có nhiều phân nhánh trong các nhánh toán học này. Nó cũng sử dụng các cấu trúc tiêu chuẩn của hình học đại số hiện đại, chẳng hạn như loại lược đồ và lý thuyết Iwasawa , và các kỹ thuật khác của thế kỷ 20 mà vào thời của Fermat chưa tồn tại.

Định lý cuối cùng của Fermat

[sửa | sửa mã nguồn]

Trong lý thuyết số, định lý cuối cùng của Fermat (đôi khi còn được gọi là phỏng đoán của Fermat) được phát biểu rằng không tồn tại ba số nguyên dương 'a, b, c thỏa mãn phương trình : cho bất kì giá trị số nguyên n nào lớn hơn 2. Các trường hợp n=1 và n=2 đã được biết đến từ thời cổ đại và có vô số cách giải.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Fermat's Last Theorem, Simon Singh, 1997, ISBN 1-85702-521-0
  2. ^ Kolata, Gina (24 tháng 6 năm 1993). “At Last, Shout of 'Eureka!' In Age-Old Math Mystery”. The New York Times. Truy cập ngày 21 tháng 1 năm 2013.
  3. ^ “The Abel Prize 2016”. Norwegian Academy of Science and Letters. 2016. Bản gốc lưu trữ ngày 20 tháng 5 năm 2020. Truy cập ngày 29 tháng 6 năm 2017.
Chúng tôi bán
Bài viết liên quan
Bạn có đồng cảm với nhân vật Thanos trong Avengers: Endgame không?
Bạn có đồng cảm với nhân vật Thanos trong Avengers: Endgame không?
[Zhihu] Bạn có đồng cảm với nhân vật Thanos trong Avengers: Endgame (2019) không?
Các shop quốc tế ngon bổ rẻ trên Shopee
Các shop quốc tế ngon bổ rẻ trên Shopee
Các shop quốc tế ngon bổ rẻ trên shopee và mẹo săn hàng đẹp 🍒
Vì sao phải đổi căn cước công dân thành căn cước?
Vì sao phải đổi căn cước công dân thành căn cước?
Luật Căn cước sẽ có hiệu lực thi hành từ 1.7, thay thế luật Căn cước công dân. Từ thời điểm này, thẻ căn cước công dân (CCCD) cũng chính thức có tên gọi mới là thẻ căn cước (CC)
Hướng dẫn tải và cài đặt ứng dụng CH Play cho mọi iPhone, iPad
Hướng dẫn tải và cài đặt ứng dụng CH Play cho mọi iPhone, iPad
Được phát triển bởi thành viên của Group iOS CodeVn có tên Lê Tí, một ứng dụng có tên CH Play đã được thành viên này tạo ra cho phép người dùng các thiết bị sử dụng hệ điều hành iOS có thể trải nghiệm kho ứng dụng của đối thủ Android ngay trên iPhone, iPad của mình