(en) Jeff Cheeger et Bruce Kleiner, « On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces. Inspired by S. S. Chern », Nankai Tracts Math., 11, World Sci. Publ., Hackensack, New Jersey, , p. 129—152
(en) Jeff Cheeger, « Differentiability of Lipschitz functions on metric measure spaces », Geom. Funct. Anal., vol. 9, no 3, , p. 428—517
(en) Jeff Cheeger et T. H. Colding, « Lower bounds on Ricci curvature and the almost rigidity of warped products », Annals of Math, vol. 144, , p. 189-237
(en) Jeff Cheeger et G. Tian, « On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay », Invent Math, vol. 118, , p. 493-571
(en) Jeff Cheeger et M. Gromov., « Collapsing Riemannian manifolds while keeping their curvature bounded, II », J. Differential Geometry, vol. 31, no 4, , p. 269-298
(en) Jeff Cheeger et J. M. Bismut, « Eta-invariants and their adiabatic limits », J. American Mathematical Society, vol. 2, no 1, , p. 33-70
(en) Jeff Cheeger, Mikhail Gromov et Michael Taylor, « Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds », J. Differential Geom, vol. 17, no 1, , p. 15—53
(en) Jeff Cheeger, « On the Hodge theory of Riemannian pseudomanifolds », Amer. Soc. Proc. Sym. Pure Math, vol. 36, , p. 91-146
(en) Jeff Cheeger et Detlef Gromoll, « The splitting theorem for manifolds of nonnegative Ricci curvature », J. Differential Geometry, vol. 6, 1971-1972, p. 119—128
(en) « A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis (Papers dedicated to Salomon Bochner, 1969) », Princeton Univ. Press, Princeton, New Jersey, , p. 195–199
(en) Jeff Cheeger et Detlef Gromoll, « The structure of complete manifolds of nonnegative curvature », Bull. Amer. Math. Soc., vol. 74, , p. 1147—1150
(en) Jeff Cheeger, « Finiteness theorems for Riemannian manifolds », Amer. J. Math., vol. 92, , p. 61—74
↑(en) « Cheeger has discovered many of the deepest results in Riemannian geometry, such as estimates for the spectrum of the Laplace-Beltrami operator, and the identity of the analytic and geometric definitions of torsion, and has led to the solution of problems in topology, graph theory, number theory, and Markov processes. »