Bình phương hay mũ 2 là phép toán áp dụng cho mọi số thực hoặc số phức. Bình phương của một số là tích của số đó với chính bản thân nó 2 lần.[1] Một cách tổng quát, bình phương chính là lũy thừa bậc 2 của một số,[1] và phép toán ngược với nó là phép khai căn bậc 2.
Số chính phương chỉ có thể tận cùng là: 0; 1; 4; 5; 6; 9. Số chính phương không thể tận cùng là: 2; 3; 7; 8.
Một số chính phương có tận cùng là 5 thì chữ số hàng chục là 2. Một số chính phương có tận cùng là 6 thì chữ số hàng chục là lẻ.
Chứng minh: Số chính phương có tận cùng là 5 suy ra có tận cùng là . Đặt . Ta có , có hai chữ số tận cùng là 25, do đó chữ số hàng chục là 2. Số chính phương có tận cùng là 6 suy ra có tận cùng là 4 hoặc 6. Xét và . Do đó chữ số hàng chục là số lẻ.
Khi phân tích một số chính phương ra thừa số nguyên tố thì các thừa số chỉ chứa số mũ chẵn.
Số lượng các ước của một số chính phương là một số lẻ.
N là số chính phương thì N chia hết cho một số nguyên tốkhi và chỉ khi N chia hết cho bình phương của số nguyên tố đó (trừ trường hợp N=0; N=1).
Tích của nhiều số chính phương là một số chính phương.