Điểm kì dị tại và hai không điểm trên đường tới hạn.
Hàmzeta Riemann hoặc hàm zeta Euler-Riemann, ζ(s), là một hàm số một biến phức, là kết quả thác triển giải tích của chuỗi Dirichlet
Chuỗi này hội tụ khi phần thực của s lớn hơn 1. Thác triển giải tích tối đại của nó được xác định trên toàn bộ mặt phẳng phức trừ điểm 1. Hàm zeta Riemann đóng vai trò then chốt trong lý thuyết số giải tích và có các ứng dụng trong vật lý, lý thuyết xác suất và thống kê ứng dụng.
Ngoài các không điểm tầm thường, hàm zeta Riemann không có không điểm ở bên phải của σ = 1 và bên trái của σ = 0. Đồ thị của hàm zeta Riemann dọc theo đường tới hạn cho các giá trị thực của t chạy từ 0 đến 34. Năm không điểm đầu tiên trong dải tới hạn có thể nhìn thấy rõ là nơi mà các vòng xoắn đi qua gốc tọa độ. Phần thực (màu đỏ) và phần ảo (màu xanh) của hàm zeta Riemann zeta dọc theo đường tới hạn Re (s) = 1/2. Các không điểm không tầm thường đầu tiên có thể được nhìn thấy tại Im (s) = ± 14.135, ± 21.022 và ± 25.011.
Phương trình hàm Riemann cho thấy hàm zeta Riemann có các không điểm tại −2, −4,…. Chúng được gọi là không điểm tầm thường. Chúng tầm thường theo nghĩa sự tồn tại của chúng tương đối dễ chứng minh, ví dụ, từ sin πs/2 bằng 0 trong phương trình hàm (lưu ý rằng các không điểm dương của hàm sin bị triệt tiêu bởi các cực điểm của hàm gamma).
Người ta biết rằng bất kỳ không điểm không tầm thường nào đều nằm trong dải mở {s ∈ ℂ: 0 < Re(s) < 1}, được gọi là dải tới hạn.Giả thuyết Riemann, được coi là một trong những vấn đề chưa được giải quyết lớn nhất trong toán học, khẳng định rằng bất kỳ không điểm không tầm thường s nào đều thỏa mãn Re(s) = 1/2. Trong lý thuyết về hàm zeta Riemann, tập {s ∈ ℂ: Re(s) = 1/2} được gọi là đường tới hạn.
Apostol, T. M. (2010), "Zeta and Related Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
Hasse, Helmut (1930). “Ein Summierungsverfahren für die Riemannsche ζ-Reihe”. Math. Z. 32: 458–464. doi:10.1007/BF01194645. MR1545177. (Globally convergent series expression.)
Ivic, A. (1985). The Riemann Zeta Function. John Wiley & Sons. ISBN0-471-80634-X.
Raoh, Guo (1996). “The Distribution of the Logarithmic Derivative of the Riemann Zeta Function”. Proceedings of the London Mathematical Society. s3–72: 1–27. arXiv:1308.3597. doi:10.1112/plms/s3-72.1.1.
Tết là thời điểm chúng ta nghỉ ngơi sau một năm làm việc căng thẳng. Ngoài việc về quê thăm hỏi họ hàng thì thời gian còn lại mọi người sẽ chọn một điểm để du lịch cùng gia đình. Nếu bạn không muốn đi nước ngoài thì ở trong nước cũng sẽ có rất nhiều điểm đẹp không thua kém bất cứ nơi nào trên thế giới. Bạn đã khám phá chưa?