Bracewell, R. (1986), The Fourier Transform and Its Applications (ấn bản thứ 2), McGraw–Hill, ISBN0071160434.
Hewitt, Edwin; Ross, Kenneth A. (1979), Abstract harmonic analysis. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 115 (ấn bản thứ 2), Berlin, New York: Springer-Verlag, ISBN978-3-540-09434-0, MR0551496.
Hewitt, Edwin; Ross, Kenneth A. (1970), Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Berlin, New York: Springer-Verlag, MR0262773.
Knuth, Donald (1997), Seminumerical Algorithms (ấn bản thứ 3), Reading, Massachusetts: Addison–Wesley, ISBN0-201-89684-2.
Rudin, Walter (1962), Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York–London, ISBN047152364X, MR0152834.
Stein, Elias; Weiss, Guido (1971), Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, ISBN0-691-08078-X.
Strichartz, R. (1994), A Guide to Distribution Theory and Fourier Transforms, CRC Press, ISBN0849382734.
Titchmarsh, E (1948), Introduction to the theory of Fourier integrals (ấn bản thứ 2), New York, N.Y.: Chelsea Pub. Co. (xuất bản 1986), ISBN978-0828403245.
Uludag, A. M. (1998), “On possible deterioration of smoothness under the operation of convolution”, J. Math. Anal. Appl. 227 no. 2, 335–358
Treves, François (1967), Topological Vector Spaces, Distributions and Kernels, Academic Press, ISBN0486453529.
von zur Gathen, J.; Gerhard, J. (2003), Modern Computer Algebra, Cambridge University Press, ISBN0-521-82646-2.
Diggle, P. J. (1995), “A kernel method for smoothing point process data”, Journal of the Royal Statistical Society, Series C) 34 (1985) 138–147
Dạo gần đây nhiều tranh cãi đi quá xa liên quan đến Story Quest của Furina quá, mình muốn chia sẻ một góc nhìn khác rằng Story Quest là 1 happy ending đối với Furina.