Giải tích hàm

Giải tích hàm là một ngành của giải tích toán học nghiên cứu các không gian vector được trang bị thêm một cấu trúc tôpô phù hợp và các toán tử tuyến tính liên tục giữa chúng. Chính việc nghiên cứu phổ của các toán tử đã dẫn đến việc nghiên cứu các đại số topo, một đối tượng khác của giải tích hàm. Các kết quả và phương pháp của nó thâm nhập vào nhiều ngành khác nhau như lý thuyết phương trình vi phân thường, phương trình đạo hàm riêng, lý thuyết các bài toán cực trịbiến phân, phương pháp tính, lý thuyết biểu diễn,... Ra đời vào những năm đầu của thế kỷ 20, bắt nguồn từ các công trình về phương trình tích phân của Hilbert, Fredholm,..., đến nay giải tích hàm tích lũy được những thành tựu quan trọng và nó đã trở thành chuẩn mực trong việc nghiên cứu và trình bày các kiến thức toán học.

Các khái niệm cơ bản

[sửa | sửa mã nguồn]
  • Không gian vector tôpô lồi địa phương. Đây có lẽ là loại không gian tổng quát nhất trong giải tích hàm. Các không gian Frechet, định chuẩn, Banach, Hilbert, là các trường hợp riêng quan trọng của các không gian vector tôpô lồi địa phương (sắp xếp theo thứ tự tính tổng quát giảm dần -> sự "tinh tế" tăng lên).
  • Các toán tử tuyến tính liên tục giữa các không gian (còn gọi là đồng cấu). 2 trường hợp đặc biệt quan trọng là các phiếm hàm tuyến tính liên tục (dạng tuyến tính liên tục) và các tự đồng cấu.
  • Giống như với các không gian, ta có các đại số tương ứng. Các đại số này dựa trên mô hình của đại số các tự đồng cấu, vì thế nên lý thuyết tổng quát về các đại số còn được gọi là lý thuyết đại số toán tử. Chú ý là khác với các không gian, các đại số thường chỉ xét trên trường số phức. Điều này là tự nhiên vì các tự đồng cấu chỉ có thể nghiên cứu "tốt" khi trường cơ sở là đóng đại số. Ngoài ra, dựa trên các tự đồng cấu tự liên hợp, người ta định nghĩa một lớp đại số định chuẩn rất quan trọng là các C*-đại số, không có sự tương ứng với các không gian!

Vào năm 1932, Banach xuất bản cuốn sách "Lý thuyết toán tử", nội dung bao gồm những kết quả được biết vào thời đó về lý thuyết các không gian định chuẩn, đặc biệt là các định lý của Banach đã công bố trong các bài báo từ năm 1922-1929... Cuốn sách này làm cho Giải tích hàm có một tác động như cuốn sách của Van der Waerden về đại số, được xuất bản hai năm trước đó. Các nhà giải tích trên thế giới bắt đầu nhận thức được sức mạnh của phương pháp mới và áp dụng chúng vào các lĩnh vực khác nhau; các ký hiệu và thuật ngữ của Banach được chấp nhận rộng rãi, không gian định chuẩn đầy đủ được gọi là không gian Banach rồi chẳng bao lâu, lý thuyết này trở thành một phần bắt buộc trong chương trình đại học... (Theo J. Dieudonné (1981))

Các nhà nghiên cứu

[sửa | sửa mã nguồn]
  • Brezis, H.: Analyse Fonctionnelle, Dunod ISBN 978-2-10-004314-9 or ISBN 978-2-10-049336-4
  • Conway, John B.: A Course in Functional Analysis, 2nd edition, Springer-Verlag, 1994, ISBN 0-387-97245-5
  • Dunford, N. and Schwartz, J.T.: Linear Operators, General Theory, and other 3 volumes, includes visualization charts
  • Eidelman, Yuli, Vitali Milman, and Antonis Tsolomitis: Functional Analysis: An Introduction, American Mathematical Society, 2004.
  • Hutson, V., Pym, J.S., Cloud M.J.: Applications of Functional Analysis and Operator Theory, 2nd edition, Elsevier Science, 2005, ISBN 0-444-51790-1
  • Kolmogorov, A.N and Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis, Dover Publications, 1999
  • Kreyszig, Erwin: Introductory Functional Analysis with Applications, Wiley, 1989.
  • Lax, P.: Functional Analysis, Wiley-Interscience, 2002
  • Lebedev, L.P. and Vorovich, I.I.: Functional Analysis in Mechanics, Springer-Verlag, 2002
  • Michel, Anthony N. and Charles J. Herget: Applied Algebra and Functional Analysis, Dover, 1993.
  • Riesz, F. and Sz.-Nagy, B.: Functional Analysis, Dover Publications, 1990
  • Rudin, W.: Functional Analysis, McGraw-Hill Science, 1991
  • Schechter, M.: Principles of Functional Analysis, AMS, 2nd edition, 2001
  • Shilov, Georgi E.: Elementary Functional Analysis, Dover, 1996.
  • Sobolev, S.L.: Applications of Functional Analysis in Mathematical Physics, AMS, 1963
  • Yosida, K.: Functional Analysis, Springer-Verlag, 6th edition, 1980

Tham khảo

[sửa | sửa mã nguồn]

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Hướng dẫn rút nước hồ và mở khóa thành tựu ẩn: Đỉnh Amakumo hùng vĩ
Hướng dẫn rút nước hồ và mở khóa thành tựu ẩn: Đỉnh Amakumo hùng vĩ
Một quest khá khó trên đảo Seirai - Genshin Impact
Một chút đọng lại về
Một chút đọng lại về " Chiến binh cầu vồng"
Nội dung cuốn sách là cuộc sống hàng ngày, cuộc đấu tranh sinh tồn cho giáo dục của ngôi trường tiểu học làng Muhammadiyah với thầy hiệu trưởng Harfan
Rung chấn có phải lựa chọn duy nhất của Eren Jeager hay không?
Rung chấn có phải lựa chọn duy nhất của Eren Jeager hay không?
Kể từ ngày Eren Jeager của Tân Đế chế Eldia tuyên chiến với cả thế giới, anh đã vấp phải làn sóng phản đối và chỉ trích không thương tiếc
Giới thiệu Dottore - Một Trong 11 Quan Chấp Hành
Giới thiệu Dottore - Một Trong 11 Quan Chấp Hành
Là 1 trong 11 quan chấp hành của Fatui với danh hiệu là Bác sĩ hoặc Giáo sư