Thông báo
DefZone.Net
DefZone.Net
Feed
Cửa hàng
Location
Video
0
Danh sách tích phân với hàm hypebolic
x
t
s
Danh sách tích phân
Hàm sơ cấp
Hàm hữu tỉ
Hàm vô tỉ
Hàm lượng giác
Hàm hypebolic
Hàm mũ
Hàm lôgarít
Hàm lượng giác ngược
Hàm hypebolic ngược
Dưới đây là
danh sách
tích phân
với
hàm hypebolic
.
∫
sinh
c
x
d
x
=
1
c
cosh
c
x
{\displaystyle \int \sinh cx\,dx={\frac {1}{c}}\cosh cx}
∫
cosh
c
x
d
x
=
1
c
sinh
c
x
{\displaystyle \int \cosh cx\,dx={\frac {1}{c}}\sinh cx}
∫
sinh
2
c
x
d
x
=
1
4
c
sinh
2
c
x
−
x
2
{\displaystyle \int \sinh ^{2}cx\,dx={\frac {1}{4c}}\sinh 2cx-{\frac {x}{2}}}
∫
cosh
2
c
x
d
x
=
1
4
c
sinh
2
c
x
+
x
2
{\displaystyle \int \cosh ^{2}cx\,dx={\frac {1}{4c}}\sinh 2cx+{\frac {x}{2}}}
∫
sinh
n
c
x
d
x
=
1
c
n
sinh
n
−
1
c
x
cosh
c
x
−
n
−
1
n
∫
sinh
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \sinh ^{n}cx\,dx={\frac {1}{cn}}\sinh ^{n-1}cx\cosh cx-{\frac {n-1}{n}}\int \sinh ^{n-2}cx\,dx\qquad {\mbox{(}}n>0{\mbox{)}}}
hay:
∫
sinh
n
c
x
d
x
=
1
c
(
n
+
1
)
sinh
n
+
1
c
x
cosh
c
x
−
n
+
2
n
+
1
∫
sinh
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \sinh ^{n}cx\,dx={\frac {1}{c(n+1)}}\sinh ^{n+1}cx\cosh cx-{\frac {n+2}{n+1}}\int \sinh ^{n+2}cx\,dx\qquad {\mbox{(}}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
cosh
n
c
x
d
x
=
1
c
n
sinh
c
x
cosh
n
−
1
c
x
+
n
−
1
n
∫
cosh
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \cosh ^{n}cx\,dx={\frac {1}{cn}}\sinh cx\cosh ^{n-1}cx+{\frac {n-1}{n}}\int \cosh ^{n-2}cx\,dx\qquad {\mbox{(}}n>0{\mbox{)}}}
hay:
∫
cosh
n
c
x
d
x
=
−
1
c
(
n
+
1
)
sinh
c
x
cosh
n
+
1
c
x
−
n
+
2
n
+
1
∫
cosh
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \cosh ^{n}cx\,dx=-{\frac {1}{c(n+1)}}\sinh cx\cosh ^{n+1}cx-{\frac {n+2}{n+1}}\int \cosh ^{n+2}cx\,dx\qquad {\mbox{(}}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
d
x
sinh
c
x
=
1
c
ln
|
tanh
c
x
2
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|\tanh {\frac {cx}{2}}\right|}
hay:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
sinh
c
x
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\sinh cx}}\right|}
hay:
∫
d
x
sinh
c
x
=
1
c
ln
|
sinh
c
x
cosh
c
x
+
1
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\sinh cx}{\cosh cx+1}}\right|}
hay:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
cosh
c
x
+
1
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\cosh cx+1}}\right|}
∫
d
x
cosh
c
x
=
2
c
arctan
e
c
x
{\displaystyle \int {\frac {dx}{\cosh cx}}={\frac {2}{c}}\arctan e^{cx}}
∫
d
x
sinh
n
c
x
=
cosh
c
x
c
(
n
−
1
)
sinh
n
−
1
c
x
−
n
−
2
n
−
1
∫
d
x
sinh
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sinh ^{n}cx}}={\frac {\cosh cx}{c(n-1)\sinh ^{n-1}cx}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
d
x
cosh
n
c
x
=
sinh
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
n
−
2
n
−
1
∫
d
x
cosh
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\cosh ^{n}cx}}={\frac {\sinh cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}cx}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
cosh
n
−
1
c
x
c
(
n
−
m
)
sinh
m
−
1
c
x
+
n
−
1
n
−
m
∫
cosh
n
−
2
c
x
sinh
m
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx={\frac {\cosh ^{n-1}cx}{c(n-m)\sinh ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m}cx}}dx\qquad {\mbox{(}}m\neq n{\mbox{)}}}
hay:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
+
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
m
+
2
m
−
1
∫
cosh
n
c
x
sinh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx=-{\frac {\cosh ^{n+1}cx}{c(m-1)\sinh ^{m-1}cx}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}cx}{\sinh ^{m-2}cx}}dx\qquad {\mbox{(}}m\neq 1{\mbox{)}}}
hay:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
−
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
1
m
−
1
∫
cosh
n
−
2
c
x
sinh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx=-{\frac {\cosh ^{n-1}cx}{c(m-1)\sinh ^{m-1}cx}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m-2}cx}}dx\qquad {\mbox{(}}m\neq 1{\mbox{)}}}
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
−
1
c
x
c
(
m
−
n
)
cosh
n
−
1
c
x
+
m
−
1
m
−
n
∫
sinh
m
−
2
c
x
cosh
n
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}dx={\frac {\sinh ^{m-1}cx}{c(m-n)\cosh ^{n-1}cx}}+{\frac {m-1}{m-n}}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n}cx}}dx\qquad {\mbox{(}}m\neq n{\mbox{)}}}
hay:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
+
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
n
+
2
n
−
1
∫
sinh
m
c
x
cosh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}dx={\frac {\sinh ^{m+1}cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}cx}{\cosh ^{n-2}cx}}dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
hay:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
−
sinh
m
−
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
1
n
−
1
∫
sinh
m
−
2
c
x
cosh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}dx=-{\frac {\sinh ^{m-1}cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n-2}cx}}dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
x
sinh
c
x
d
x
=
1
c
x
cosh
c
x
−
1
c
2
sinh
c
x
{\displaystyle \int x\sinh cx\,dx={\frac {1}{c}}x\cosh cx-{\frac {1}{c^{2}}}\sinh cx}
∫
x
cosh
c
x
d
x
=
1
c
x
sinh
c
x
−
1
c
2
cosh
c
x
{\displaystyle \int x\cosh cx\,dx={\frac {1}{c}}x\sinh cx-{\frac {1}{c^{2}}}\cosh cx}
∫
tanh
c
x
d
x
=
1
c
ln
|
cosh
c
x
|
{\displaystyle \int \tanh cx\,dx={\frac {1}{c}}\ln |\cosh cx|}
∫
coth
c
x
d
x
=
1
c
ln
|
sinh
c
x
|
{\displaystyle \int \coth cx\,dx={\frac {1}{c}}\ln |\sinh cx|}
∫
tanh
n
c
x
d
x
=
−
1
c
(
n
−
1
)
tanh
n
−
1
c
x
+
∫
tanh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \tanh ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\tanh ^{n-1}cx+\int \tanh ^{n-2}cx\,dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
coth
n
c
x
d
x
=
−
1
c
(
n
−
1
)
coth
n
−
1
c
x
+
∫
coth
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \coth ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\coth ^{n-1}cx+\int \coth ^{n-2}cx\,dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
sinh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
c
x
cosh
b
x
−
c
cosh
c
x
sinh
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \sinh bx\sinh cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\sinh cx\cosh bx-c\cosh cx\sinh bx)\qquad {\mbox{(}}b^{2}\neq c^{2}{\mbox{)}}}
∫
cosh
b
x
cosh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
cosh
c
x
−
c
sinh
c
x
cosh
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\cosh cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\sinh bx\cosh cx-c\sinh cx\cosh bx)\qquad {\mbox{(}}b^{2}\neq c^{2}{\mbox{)}}}
∫
cosh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
sinh
c
x
−
c
cosh
b
x
cosh
c
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\sinh cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\sinh bx\sinh cx-c\cosh bx\cosh cx)\qquad {\mbox{(}}b^{2}\neq c^{2}{\mbox{)}}}
∫
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)}
∫
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)}
∫
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)}
∫
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)}
Xem thêm
[
sửa
|
sửa mã nguồn
]
Danh sách tích phân
Tham khảo
[
sửa
|
sửa mã nguồn
]
Liên kết ngoài
[
sửa
|
sửa mã nguồn
]
Tính biểu thức tích phân
Chúng tôi bán
GIẢM
48%
12.000 ₫
23.000 ₫
Vòng đeo tay cao su mặt khắc họa tiết chữ Tokyo Ghoul đơn giản
GIẢM
16%
88.200 ₫
105.000 ₫
[Review Sách] Điều kỳ diệu của tiệm tạp hóa Namiya
GIẢM
20%
120.000 ₫
150.000 ₫
Figure Louis Light Azur Lane
GIẢM
40%
6.000 ₫
10.000 ₫
Ốp Điện Thoại Hình Doraemon 3D Cho OPPO
GIẢM
44%
5.000 ₫
9.000 ₫
Poster, Tranh dán tường, Áp phích anime Tokyo Revengers nhân vật Baji Keisuke
GIẢM
25%
70.000 ₫
93.000 ₫
Sách kĩ năng - Dám Bị Ghét
Bài viết liên quan
Du lịch Thái Lan – Hòa mình vào lễ hội té nước Songkran
Người dân và khách đi tour Thái Lan đang tưng bừng trong lễ mừng năm mới và lễ hội té nước, với các lễ hội đầy màu sắc và niềm vui
Lịch sử World Item & câu chuyện xoay quanh nó
Trong truyền thuyết trò chơi YGGDRASIL, Cây Thế giới từng được bao phủ bởi vô số chiếc lá, nhưng một ngày nọ, một con quái vật khổng lồ xuất hiện và ăn tươi nuốt sống những chiếc lá này
Giới thiệu AG Mega Armor Mel - Giant Gospel Cannon
Nhìn chung Mel bộ kỹ năng phù hợp trong những trận PVP với đội hình Cleaver, khả năng tạo shield
Tại sao Hamas lại tấn công Israel?
Vào ngày 7 tháng 10, một bình minh mới đã đến trên vùng đất Thánh, nhưng không có ánh sáng nào có thể xua tan bóng tối của sự hận thù và đau buồn.