Đây là danh sách tích phân (nguyên hàm ) của các hàm lượng giác . Đối với tích phân của chứa hàm lượng giác và hàm mũ, xem Danh sách tích phân với hàm mũ . Đối với danh sách đầy đủ các tích phân, xem Danh sách tích phân . Đối với danh sách các tích phân đặc biệt của các hàm lượng giác, xem Tích phân lượng giác .
Nhìn chung, với
cos
(
x
)
{\displaystyle \cos(x)}
là đạo hàm của hàm số
sin
(
x
)
{\displaystyle \sin(x)}
, ta có
∫
a
cos
n
x
d
x
=
a
n
sin
n
x
+
C
{\displaystyle \int a\cos nx\,dx={\frac {a}{n}}\sin nx+C}
Trong mọi công thức dưới đây, a là một hằng số khác không và C ký hiệu cho hằng số tích phân .
∫
sin
a
x
d
x
=
−
1
a
cos
a
x
+
C
{\displaystyle \int \sin ax\,dx=-{\frac {1}{a}}\cos ax+C}
∫
sin
2
a
x
d
x
=
x
2
−
1
4
a
sin
2
a
x
+
C
=
x
2
−
1
2
a
sin
a
x
cos
a
x
+
C
{\displaystyle \int \sin ^{2}{ax}\,dx={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C}
∫
sin
3
a
x
d
x
=
cos
3
a
x
12
a
−
3
cos
a
x
4
a
+
C
{\displaystyle \int \sin ^{3}{ax}\,dx={\frac {\cos 3ax}{12a}}-{\frac {3\cos ax}{4a}}+C}
∫
x
sin
2
a
x
d
x
=
x
2
4
−
x
4
a
sin
2
a
x
−
1
8
a
2
cos
2
a
x
+
C
{\displaystyle \int x\sin ^{2}{ax}\,dx={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C}
∫
x
2
sin
2
a
x
d
x
=
x
3
6
−
(
x
2
4
a
−
1
8
a
3
)
sin
2
a
x
−
x
4
a
2
cos
2
a
x
+
C
{\displaystyle \int x^{2}\sin ^{2}{ax}\,dx={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C}
∫
x
sin
a
x
d
x
=
sin
a
x
a
2
−
x
cos
a
x
a
+
C
{\displaystyle \int x\sin ax\,dx={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C}
∫
(
sin
b
1
x
)
(
sin
b
2
x
)
d
x
=
sin
(
(
b
2
−
b
1
)
x
)
2
(
b
2
−
b
1
)
−
sin
(
(
b
1
+
b
2
)
x
)
2
(
b
1
+
b
2
)
+
C
(
|
b
1
|
≠
|
b
2
|
)
{\displaystyle \int (\sin b_{1}x)(\sin b_{2}x)\,dx={\frac {\sin((b_{2}-b_{1})x)}{2(b_{2}-b_{1})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(}}|b_{1}|\neq |b_{2}|{\mbox{)}}}
∫
sin
n
a
x
d
x
=
−
sin
n
−
1
a
x
cos
a
x
n
a
+
n
−
1
n
∫
sin
n
−
2
a
x
d
x
(
n
>
0
)
{\displaystyle \int \sin ^{n}{ax}\,dx=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\,dx\qquad {\mbox{(}}n>0{\mbox{)}}}
∫
d
x
sin
a
x
=
−
1
a
ln
|
csc
a
x
+
cot
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\sin ax}}=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}
∫
d
x
sin
n
a
x
=
cos
a
x
a
(
1
−
n
)
sin
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
sin
n
−
2
a
x
(
n
>
1
)
{\displaystyle \int {\frac {dx}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}ax}}\qquad {\mbox{(}}n>1{\mbox{)}}}
∫
x
n
sin
a
x
d
x
=
−
x
n
a
cos
a
x
+
n
a
∫
x
n
−
1
cos
a
x
d
x
=
∑
k
=
0
2
k
≤
n
(
−
1
)
k
+
1
x
n
−
2
k
a
1
+
2
k
n
!
(
n
−
2
k
)
!
cos
a
x
+
∑
k
=
0
2
k
+
1
≤
n
(
−
1
)
k
x
n
−
1
−
2
k
a
2
+
2
k
n
!
(
n
−
2
k
−
1
)
!
sin
a
x
=
−
∑
k
=
0
n
x
n
−
k
a
1
+
k
n
!
(
n
−
k
)
!
cos
(
a
x
+
k
π
2
)
(
n
>
0
)
{\displaystyle {\begin{aligned}\int x^{n}\sin ax\,dx&=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\,dx\\&=\sum _{k=0}^{2k\leq n}(-1)^{k+1}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\cos ax+\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-1-2k}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\sin ax\\&=-\sum _{k=0}^{n}{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\cos \left(ax+k{\frac {\pi }{2}}\right)\qquad {\mbox{(}}n>0{\mbox{)}}\end{aligned}}}
∫
sin
a
x
x
d
x
=
∑
n
=
0
∞
(
−
1
)
n
(
a
x
)
2
n
+
1
(
2
n
+
1
)
⋅
(
2
n
+
1
)
!
+
C
{\displaystyle \int {\frac {\sin ax}{x}}\,dx=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C}
∫
sin
a
x
x
n
d
x
=
−
sin
a
x
(
n
−
1
)
x
n
−
1
+
a
n
−
1
∫
cos
a
x
x
n
−
1
d
x
{\displaystyle \int {\frac {\sin ax}{x^{n}}}\,dx=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}\,dx}
∫
d
x
1
±
sin
a
x
=
1
a
tan
(
a
x
2
∓
π
4
)
+
C
{\displaystyle \int {\frac {dx}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}
∫
x
d
x
1
+
sin
a
x
=
x
a
tan
(
a
x
2
−
π
4
)
+
2
a
2
ln
|
cos
(
a
x
2
−
π
4
)
|
+
C
{\displaystyle \int {\frac {x\,dx}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}
∫
x
d
x
1
−
sin
a
x
=
x
a
cot
(
π
4
−
a
x
2
)
+
2
a
2
ln
|
sin
(
π
4
−
a
x
2
)
|
+
C
{\displaystyle \int {\frac {x\,dx}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}
∫
sin
a
x
d
x
1
±
sin
a
x
=
±
x
+
1
a
tan
(
π
4
∓
a
x
2
)
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}
∫
cos
a
x
d
x
=
1
a
sin
a
x
+
C
{\displaystyle \int \cos ax\,dx={\frac {1}{a}}\sin ax+C}
∫
cos
2
a
x
d
x
=
x
2
+
1
4
a
sin
2
a
x
+
C
=
x
2
+
1
2
a
sin
a
x
cos
a
x
+
C
{\displaystyle \int \cos ^{2}{ax}\,dx={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C}
∫
cos
n
a
x
d
x
=
cos
n
−
1
a
x
sin
a
x
n
a
+
n
−
1
n
∫
cos
n
−
2
a
x
d
x
(
n
>
0
)
{\displaystyle \int \cos ^{n}ax\,dx={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\,dx\qquad {\mbox{(}}n>0{\mbox{)}}}
∫
x
cos
a
x
d
x
=
cos
a
x
a
2
+
x
sin
a
x
a
+
C
{\displaystyle \int x\cos ax\,dx={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C}
∫
x
2
cos
2
a
x
d
x
=
x
3
6
+
(
x
2
4
a
−
1
8
a
3
)
sin
2
a
x
+
x
4
a
2
cos
2
a
x
+
C
{\displaystyle \int x^{2}\cos ^{2}{ax}\,dx={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C}
∫
x
n
cos
a
x
d
x
=
x
n
sin
a
x
a
−
n
a
∫
x
n
−
1
sin
a
x
d
x
=
∑
k
=
0
2
k
+
1
≤
n
(
−
1
)
k
x
n
−
2
k
−
1
a
2
+
2
k
n
!
(
n
−
2
k
−
1
)
!
cos
a
x
+
∑
k
=
0
2
k
≤
n
(
−
1
)
k
x
n
−
2
k
a
1
+
2
k
n
!
(
n
−
2
k
)
!
sin
a
x
=
∑
k
=
0
n
(
−
1
)
⌊
k
/
2
⌋
x
n
−
k
a
1
+
k
n
!
(
n
−
k
)
!
cos
(
a
x
−
(
−
1
)
k
+
1
2
π
2
)
=
∑
k
=
0
n
x
n
−
k
a
1
+
k
n
!
(
n
−
k
)
!
sin
(
a
x
+
k
π
2
)
(
n
>
0
)
{\displaystyle {\begin{aligned}\int x^{n}\cos ax\,dx&={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\,dx\\&=\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-2k-1}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\cos ax+\sum _{k=0}^{2k\leq n}(-1)^{k}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\sin ax\\&=\sum _{k=0}^{n}(-1)^{\lfloor k/2\rfloor }{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\cos \left(ax-{\frac {(-1)^{k}+1}{2}}{\frac {\pi }{2}}\right)\\&=\sum _{k=0}^{n}{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\sin \left(ax+k{\frac {\pi }{2}}\right)\qquad {\mbox{(}}n>0{\mbox{)}}\end{aligned}}}
∫
cos
a
x
x
d
x
=
ln
|
a
x
|
+
∑
k
=
1
∞
(
−
1
)
k
(
a
x
)
2
k
2
k
⋅
(
2
k
)
!
+
C
{\displaystyle \int {\frac {\cos ax}{x}}\,dx=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C}
∫
cos
a
x
x
n
d
x
=
−
cos
a
x
(
n
−
1
)
x
n
−
1
−
a
n
−
1
∫
sin
a
x
x
n
−
1
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\cos ax}{x^{n}}}\,dx=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}\,dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
d
x
cos
a
x
=
1
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {dx}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
d
x
cos
n
a
x
=
sin
a
x
a
(
n
−
1
)
cos
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
cos
n
−
2
a
x
(
n
>
1
)
{\displaystyle \int {\frac {dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(}}n>1{\mbox{)}}}
∫
d
x
1
+
cos
a
x
=
1
a
tan
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C}
∫
d
x
1
−
cos
a
x
=
−
1
a
cot
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C}
∫
x
d
x
1
+
cos
a
x
=
x
a
tan
a
x
2
+
2
a
2
ln
|
cos
a
x
2
|
+
C
{\displaystyle \int {\frac {x\,dx}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
∫
x
d
x
1
−
cos
a
x
=
−
x
a
cot
a
x
2
+
2
a
2
ln
|
sin
a
x
2
|
+
C
{\displaystyle \int {\frac {x\,dx}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
∫
cos
a
x
d
x
1
+
cos
a
x
=
x
−
1
a
tan
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C}
∫
cos
a
x
d
x
1
−
cos
a
x
=
−
x
−
1
a
cot
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C}
∫
(
cos
a
1
x
)
(
cos
a
2
x
)
d
x
=
sin
(
(
a
2
−
a
1
)
x
)
2
(
a
2
−
a
1
)
+
sin
(
(
a
2
+
a
1
)
x
)
2
(
a
2
+
a
1
)
+
C
(
|
a
1
|
≠
|
a
2
|
)
{\displaystyle \int (\cos a_{1}x)(\cos a_{2}x)\,dx={\frac {\sin((a_{2}-a_{1})x)}{2(a_{2}-a_{1})}}+{\frac {\sin((a_{2}+a_{1})x)}{2(a_{2}+a_{1})}}+C\qquad {\mbox{(}}|a_{1}|\neq |a_{2}|{\mbox{)}}}
∫
tan
a
x
d
x
=
−
1
a
ln
|
cos
a
x
|
+
C
=
1
a
ln
|
sec
a
x
|
+
C
{\displaystyle \int \tan ax\,dx=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}
∫
tan
2
x
d
x
=
tan
x
−
x
+
C
{\displaystyle \int \tan ^{2}{x}\,dx=\tan {x}-x+C}
∫
tan
n
a
x
d
x
=
1
a
(
n
−
1
)
tan
n
−
1
a
x
−
∫
tan
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int \tan ^{n}ax\,dx={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\,dx\qquad (n\neq 1)\,\!}
∫
d
x
q
tan
a
x
+
p
=
1
p
2
+
q
2
(
p
x
+
q
a
ln
|
q
sin
a
x
+
p
cos
a
x
|
)
+
C
(
p
2
+
q
2
≠
0
)
{\displaystyle \int {\frac {dx}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad (p^{2}+q^{2}\neq 0)\,\!}
∫
d
x
tan
a
x
+
1
=
x
2
+
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫
d
x
tan
a
x
−
1
=
−
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
+
1
=
x
2
−
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\,dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
−
1
=
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\,dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
∫
sec
a
x
d
x
=
1
a
ln
|
sec
a
x
+
tan
a
x
|
+
C
{\displaystyle \int \sec {ax}\,dx={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}{x}\,dx=\tan {x}+C}
∫
sec
n
a
x
d
x
=
sec
n
−
2
a
x
tan
a
x
a
(
n
−
1
)
+
n
−
2
n
−
1
∫
sec
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int \sec ^{n}{ax}\,dx={\frac {\sec ^{n-2}{ax}\tan {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
∫
sec
n
x
d
x
=
sec
n
−
2
x
tan
x
n
−
1
+
n
−
2
n
−
1
∫
sec
n
−
2
x
d
x
{\displaystyle \int \sec ^{n}{x}\,dx={\frac {\sec ^{n-2}{x}\tan {x}}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{x}\,dx}
[ 1]
∫
d
x
sec
x
+
1
=
x
−
tan
x
2
+
C
{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}
∫
d
x
sec
x
−
1
=
−
x
−
cot
x
2
+
C
{\displaystyle \int {\frac {dx}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}
∫
csc
a
x
d
x
=
−
1
a
ln
|
csc
a
x
+
cot
a
x
|
+
C
=
1
a
ln
|
csc
a
x
−
cot
a
x
|
+
C
=
1
a
ln
|
tan
(
a
x
2
)
|
+
C
{\displaystyle {\begin{aligned}\int \csc {ax}\,dx&=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C\\&={\frac {1}{a}}\ln {\left|\csc {ax}-\cot {ax}\right|}+C\\&={\frac {1}{a}}\ln {\left|\tan {\left({\frac {ax}{2}}\right)}\right|}+C\end{aligned}}}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}+C}
∫
csc
3
x
d
x
=
−
1
2
csc
x
cot
x
−
1
2
ln
|
csc
x
+
cot
x
|
+
C
=
−
1
2
csc
x
cot
x
+
1
2
ln
|
csc
x
−
cot
x
|
+
C
{\displaystyle {\begin{aligned}\int \csc ^{3}{x}\,dx&=-{\frac {1}{2}}\csc x\cot x-{\frac {1}{2}}\ln |\csc x+\cot x|+C\\&=-{\frac {1}{2}}\csc x\cot x+{\frac {1}{2}}\ln |\csc x-\cot x|+C\end{aligned}}}
∫
csc
n
a
x
d
x
=
−
csc
n
−
2
a
x
cot
a
x
a
(
n
−
1
)
+
n
−
2
n
−
1
∫
csc
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int \csc ^{n}{ax}\,dx=-{\frac {\csc ^{n-2}{ax}\cot {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,dx\qquad {\mbox{ (}}n\neq 1{\mbox{)}}}
∫
d
x
csc
x
+
1
=
x
−
2
cot
x
2
+
1
+
C
{\displaystyle \int {\frac {dx}{\csc {x}+1}}=x-{\frac {2}{\cot {\frac {x}{2}}+1}}+C}
∫
d
x
csc
x
−
1
=
−
x
+
2
cot
x
2
−
1
+
C
{\displaystyle \int {\frac {dx}{\csc {x}-1}}=-x+{\frac {2}{\cot {\frac {x}{2}}-1}}+C}
∫
cot
a
x
d
x
=
1
a
ln
|
sin
a
x
|
+
C
{\displaystyle \int \cot ax\,dx={\frac {1}{a}}\ln |\sin ax|+C}
∫
cot
2
x
d
x
=
−
cot
x
−
x
+
C
{\displaystyle \int \cot ^{2}{x}\,dx=-\cot {x}-x+C}
∫
cot
n
a
x
d
x
=
−
1
a
(
n
−
1
)
cot
n
−
1
a
x
−
∫
cot
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int \cot ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\,dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
d
x
1
+
cot
a
x
=
∫
tan
a
x
d
x
tan
a
x
+
1
=
x
2
−
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {dx}{1+\cot ax}}=\int {\frac {\tan ax\,dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C}
∫
d
x
1
−
cot
a
x
=
∫
tan
a
x
d
x
tan
a
x
−
1
=
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {dx}{1-\cot ax}}=\int {\frac {\tan ax\,dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C}
Tích phân một hàm hữu tỉ (phân thức) của sin và cos có thể được tính bằng quy tắc Bioche .
∫
d
x
cos
a
x
±
sin
a
x
=
1
a
2
ln
|
tan
(
a
x
2
±
π
8
)
|
+
C
{\displaystyle \int {\frac {dx}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}
∫
d
x
(
cos
a
x
±
sin
a
x
)
2
=
1
2
a
tan
(
a
x
∓
π
4
)
+
C
{\displaystyle \int {\frac {dx}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}
∫
d
x
(
cos
x
+
sin
x
)
n
=
1
n
−
1
(
sin
x
−
cos
x
(
cos
x
+
sin
x
)
n
−
1
−
2
(
n
−
2
)
∫
d
x
(
cos
x
+
sin
x
)
n
−
2
)
{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}
∫
cos
a
x
d
x
cos
a
x
±
sin
a
x
=
x
2
±
1
2
a
ln
|
sin
a
x
±
cos
a
x
|
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{\cos ax\pm \sin ax}}={\frac {x}{2}}\pm {\frac {1}{2a}}\ln \left|\sin ax\pm \cos ax\right|+C}
∫
sin
a
x
d
x
cos
a
x
±
sin
a
x
=
±
x
2
−
1
2
a
ln
|
sin
a
x
±
cos
a
x
|
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{\cos ax\pm \sin ax}}=\pm {\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax\pm \cos ax\right|+C}
∫
cos
a
x
d
x
(
sin
a
x
)
(
1
+
cos
a
x
)
=
−
1
4
a
tan
2
a
x
2
+
1
2
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{(\sin ax)(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫
cos
a
x
d
x
(
sin
a
x
)
(
1
−
cos
a
x
)
=
−
1
4
a
cot
2
a
x
2
−
1
2
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{(\sin ax)(1-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫
sin
a
x
d
x
(
cos
a
x
)
(
1
+
sin
a
x
)
=
1
4
a
cot
2
(
a
x
2
+
π
4
)
+
1
2
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{(\cos ax)(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
sin
a
x
d
x
(
cos
a
x
)
(
1
−
sin
a
x
)
=
1
4
a
tan
2
(
a
x
2
+
π
4
)
−
1
2
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{(\cos ax)(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
(
sin
a
x
)
(
cos
a
x
)
d
x
=
1
2
a
sin
2
a
x
+
C
{\displaystyle \int (\sin ax)(\cos ax)\,dx={\frac {1}{2a}}\sin ^{2}ax+C}
∫
(
sin
a
1
x
)
(
cos
a
2
x
)
d
x
=
−
cos
(
(
a
1
−
a
2
)
x
)
2
(
a
1
−
a
2
)
−
cos
(
(
a
1
+
a
2
)
x
)
2
(
a
1
+
a
2
)
+
C
(
|
a
1
|
≠
|
a
2
|
)
{\displaystyle \int (\sin a_{1}x)(\cos a_{2}x)\,dx=-{\frac {\cos((a_{1}-a_{2})x)}{2(a_{1}-a_{2})}}-{\frac {\cos((a_{1}+a_{2})x)}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(}}|a_{1}|\neq |a_{2}|{\mbox{)}}}
∫
(
sin
n
a
x
)
(
cos
a
x
)
d
x
=
1
a
(
n
+
1
)
sin
n
+
1
a
x
+
C
(
n
≠
−
1
)
{\displaystyle \int (\sin ^{n}ax)(\cos ax)\,dx={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}}
∫
(
sin
a
x
)
(
cos
n
a
x
)
d
x
=
−
1
a
(
n
+
1
)
cos
n
+
1
a
x
+
C
(
n
≠
−
1
)
{\displaystyle \int (\sin ax)(\cos ^{n}ax)\,dx=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}}
∫
(
sin
n
a
x
)
(
cos
m
a
x
)
d
x
=
−
(
sin
n
−
1
a
x
)
(
cos
m
+
1
a
x
)
a
(
n
+
m
)
+
n
−
1
n
+
m
∫
(
sin
n
−
2
a
x
)
(
cos
m
a
x
)
d
x
(
m
,
n
>
0
)
=
(
sin
n
+
1
a
x
)
(
cos
m
−
1
a
x
)
a
(
n
+
m
)
+
m
−
1
n
+
m
∫
(
sin
n
a
x
)
(
cos
m
−
2
a
x
)
d
x
(
m
,
n
>
0
)
{\displaystyle {\begin{aligned}\int (\sin ^{n}ax)(\cos ^{m}ax)\,dx&=-{\frac {(\sin ^{n-1}ax)(\cos ^{m+1}ax)}{a(n+m)}}+{\frac {n-1}{n+m}}\int (\sin ^{n-2}ax)(\cos ^{m}ax)\,dx\qquad {\mbox{(}}m,n>0{\mbox{)}}\\&={\frac {(\sin ^{n+1}ax)(\cos ^{m-1}ax)}{a(n+m)}}+{\frac {m-1}{n+m}}\int (\sin ^{n}ax)(\cos ^{m-2}ax)\,dx\qquad {\mbox{(}}m,n>0{\mbox{)}}\end{aligned}}}
∫
d
x
(
sin
a
x
)
(
cos
a
x
)
=
1
a
ln
|
tan
a
x
|
+
C
{\displaystyle \int {\frac {dx}{(\sin ax)(\cos ax)}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}
∫
d
x
(
sin
a
x
)
(
cos
n
a
x
)
=
1
a
(
n
−
1
)
cos
n
−
1
a
x
+
∫
d
x
(
sin
a
x
)
(
cos
n
−
2
a
x
)
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{(\sin ax)(\cos ^{n}ax)}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {dx}{(\sin ax)(\cos ^{n-2}ax)}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
d
x
(
sin
n
a
x
)
(
cos
a
x
)
=
−
1
a
(
n
−
1
)
sin
n
−
1
a
x
+
∫
d
x
(
sin
n
−
2
a
x
)
(
cos
a
x
)
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{(\sin ^{n}ax)(\cos ax)}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {dx}{(\sin ^{n-2}ax)(\cos ax)}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
sin
a
x
d
x
cos
n
a
x
=
1
a
(
n
−
1
)
cos
n
−
1
a
x
+
C
(
n
≠
1
)
{\displaystyle \int {\frac {\sin ax\,dx}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
sin
2
a
x
d
x
cos
a
x
=
−
1
a
sin
a
x
+
1
a
ln
|
tan
(
π
4
+
a
x
2
)
|
+
C
{\displaystyle \int {\frac {\sin ^{2}ax\,dx}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}
∫
sin
2
a
x
d
x
cos
n
a
x
=
sin
a
x
a
(
n
−
1
)
cos
n
−
1
a
x
−
1
n
−
1
∫
d
x
cos
n
−
2
a
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sin ^{2}ax\,dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
sin
n
a
x
d
x
cos
a
x
=
−
sin
n
−
1
a
x
a
(
n
−
1
)
+
∫
sin
n
−
2
a
x
d
x
cos
a
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\,dx}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\,dx}{\cos ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
sin
n
a
x
d
x
cos
m
a
x
=
{
sin
n
+
1
a
x
a
(
m
−
1
)
cos
m
−
1
a
x
−
n
−
m
+
2
m
−
1
∫
sin
n
a
x
d
x
cos
m
−
2
a
x
(
m
≠
1
)
sin
n
−
1
a
x
a
(
m
−
1
)
cos
m
−
1
a
x
−
n
−
1
m
−
1
∫
sin
n
−
2
a
x
d
x
cos
m
−
2
a
x
(
m
≠
1
)
−
sin
n
−
1
a
x
a
(
n
−
m
)
cos
m
−
1
a
x
+
n
−
1
n
−
m
∫
sin
n
−
2
a
x
d
x
cos
m
a
x
(
m
≠
n
)
{\displaystyle \int {\frac {\sin ^{n}ax\,dx}{\cos ^{m}ax}}={\begin{cases}{\dfrac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\dfrac {n-m+2}{m-1}}\displaystyle \int {\dfrac {\sin ^{n}ax\,dx}{\cos ^{m-2}ax}}&{\mbox{(}}m\neq 1{\mbox{)}}\\{\dfrac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\dfrac {n-1}{m-1}}\displaystyle \int {\dfrac {\sin ^{n-2}ax\,dx}{\cos ^{m-2}ax}}&{\mbox{(}}m\neq 1{\mbox{)}}\\-{\dfrac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\dfrac {n-1}{n-m}}\displaystyle \int {\dfrac {\sin ^{n-2}ax\,dx}{\cos ^{m}ax}}&{\mbox{(}}m\neq n{\mbox{)}}\end{cases}}}
∫
cos
a
x
d
x
sin
n
a
x
=
−
1
a
(
n
−
1
)
sin
n
−
1
a
x
+
C
(
n
≠
1
)
{\displaystyle \int {\frac {\cos ax\,dx}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
cos
2
a
x
d
x
sin
a
x
=
1
a
(
cos
a
x
+
ln
|
tan
a
x
2
|
)
+
C
{\displaystyle \int {\frac {\cos ^{2}ax\,dx}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}
∫
cos
2
a
x
d
x
sin
n
a
x
=
−
1
n
−
1
(
cos
a
x
a
sin
n
−
1
a
x
+
∫
d
x
sin
n
−
2
a
x
)
(
n
≠
1
)
{\displaystyle \int {\frac {\cos ^{2}ax\,dx}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax}}+\int {\frac {dx}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
cos
n
a
x
d
x
sin
m
a
x
=
{
−
cos
n
+
1
a
x
a
(
m
−
1
)
sin
m
−
1
a
x
−
n
−
m
+
2
m
−
1
∫
cos
n
a
x
d
x
sin
m
−
2
a
x
(
m
≠
1
)
−
cos
n
−
1
a
x
a
(
m
−
1
)
sin
m
−
1
a
x
−
n
−
1
m
−
1
∫
cos
n
−
2
a
x
d
x
sin
m
−
2
a
x
(
m
≠
1
)
cos
n
−
1
a
x
a
(
n
−
m
)
sin
m
−
1
a
x
+
n
−
1
n
−
m
∫
cos
n
−
2
a
x
d
x
sin
m
a
x
(
m
≠
n
)
{\displaystyle \int {\frac {\cos ^{n}ax\,dx}{\sin ^{m}ax}}={\begin{cases}-{\dfrac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\dfrac {n-m+2}{m-1}}\displaystyle \int {\dfrac {\cos ^{n}ax\,dx}{\sin ^{m-2}ax}}&{\mbox{(}}m\neq 1{\mbox{)}}\\-{\dfrac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\dfrac {n-1}{m-1}}\displaystyle \int {\dfrac {\cos ^{n-2}ax\,dx}{\sin ^{m-2}ax}}&{\mbox{(}}m\neq 1{\mbox{)}}\\{\dfrac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\dfrac {n-1}{n-m}}\displaystyle \int {\dfrac {\cos ^{n-2}ax\,dx}{\sin ^{m}ax}}&{\mbox{(}}m\neq n{\mbox{)}}\end{cases}}}
∫
sin
a
x
tan
a
x
d
x
=
1
a
(
ln
|
sec
a
x
+
tan
a
x
|
−
sin
a
x
)
+
C
{\displaystyle \int \sin ax\tan ax\,dx={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C\,\!}
∫
tan
n
a
x
d
x
sin
2
a
x
=
1
a
(
n
−
1
)
tan
n
−
1
(
a
x
)
+
C
(
n
≠
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\,dx}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad (n\neq 1)\,\!}
∫
tan
n
a
x
d
x
cos
2
a
x
=
1
a
(
n
+
1
)
tan
n
+
1
a
x
+
C
(
n
≠
−
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\,dx}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad (n\neq -1)\,\!}
∫
cot
n
a
x
d
x
sin
2
a
x
=
−
1
a
(
n
+
1
)
cot
n
+
1
a
x
+
C
(
n
≠
−
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\,dx}{\sin ^{2}ax}}=-{\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad (n\neq -1)\,\!}
∫
cot
n
a
x
d
x
cos
2
a
x
=
1
a
(
1
−
n
)
tan
1
−
n
a
x
+
C
(
n
≠
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\,dx}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad (n\neq 1)\,\!}
∫
(
sec
x
)
(
tan
x
)
d
x
=
sec
x
+
C
{\displaystyle \int (\sec x)(\tan x)\,dx=\sec x+C}
∫
(
csc
x
)
(
cot
x
)
d
x
=
−
csc
x
+
C
{\displaystyle \int (\csc x)(\cot x)\,dx=-\csc x+C}
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
{
n
−
1
n
⋅
n
−
3
n
−
2
⋯
3
4
⋅
1
2
⋅
π
2
,
n
=
2
,
4
,
6
,
8
,
…
n
−
1
n
⋅
n
−
3
n
−
2
⋯
4
5
⋅
2
3
,
n
=
3
,
5
,
7
,
9
,
…
1
,
n
=
1
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\begin{cases}{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdots {\frac {3}{4}}\cdot {\frac {1}{2}}\cdot {\frac {\pi }{2}},&n=2,4,6,8,\ldots \\{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdots {\frac {4}{5}}\cdot {\frac {2}{3}},&n=3,5,7,9,\ldots \\1,&n=1\end{cases}}}
∫
−
c
c
sin
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\sin {x}\,dx=0}
∫
−
c
c
cos
x
d
x
=
2
∫
0
c
cos
x
d
x
=
2
∫
−
c
0
cos
x
d
x
=
2
sin
c
{\displaystyle \int _{-c}^{c}\cos {x}\,dx=2\int _{0}^{c}\cos {x}\,dx=2\int _{-c}^{0}\cos {x}\,dx=2\sin {c}}
∫
−
c
c
tan
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\tan {x}\,dx=0}
∫
−
a
2
a
2
x
2
cos
2
n
π
x
a
d
x
=
a
3
(
n
2
π
2
−
6
)
24
n
2
π
2
{\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\,dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad }
(n là số nguyên dương lẻ)
∫
−
a
2
a
2
x
2
sin
2
n
π
x
a
d
x
=
a
3
(
n
2
π
2
−
6
(
−
1
)
n
)
24
n
2
π
2
=
a
3
24
(
1
−
6
(
−
1
)
n
n
2
π
2
)
{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\,dx={\frac {a^{3}(n^{2}\pi ^{2}-6(-1)^{n})}{24n^{2}\pi ^{2}}}={\frac {a^{3}}{24}}(1-6{\frac {(-1)^{n}}{n^{2}\pi ^{2}}})\qquad }
(n là số nguyên dương)
∫
0
2
π
sin
2
m
+
1
x
cos
2
n
+
1
x
d
x
=
0
m
,
n
∈
Z
{\displaystyle \int _{0}^{2\pi }\sin ^{2m+1}{x}\cos ^{2n+1}{x}\,dx=0\qquad m,n\in \mathbb {Z} }
^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008