Thông báo
DefZone.Net
DefZone.Net
Feed
Cửa hàng
Location
Video
0
Danh sách tích phân với hàm hyperbolic ngược
Dưới đây là
danh sách các
tích phân
với
hàm hyperbolic ngược
.
∫
a
r
s
i
n
h
x
c
d
x
=
x
a
r
s
i
n
h
x
c
−
x
2
+
c
2
{\displaystyle \int \mathrm {arsinh} \,{\frac {x}{c}}\,dx=x\,\mathrm {arsinh} \,{\frac {x}{c}}-{\sqrt {x^{2}+c^{2}}}}
∫
a
r
c
o
s
h
x
c
d
x
=
x
a
r
c
o
s
h
x
c
−
x
2
−
c
2
{\displaystyle \int \mathrm {arcosh} \,{\frac {x}{c}}\,dx=x\,\mathrm {arcosh} \,{\frac {x}{c}}-{\sqrt {x^{2}-c^{2}}}}
∫
a
r
t
a
n
h
x
c
d
x
=
x
a
r
t
a
n
h
x
c
+
c
2
ln
|
c
2
−
x
2
|
(
|
x
|
<
|
c
|
)
{\displaystyle \int \mathrm {artanh} \,{\frac {x}{c}}\,dx=x\,\mathrm {artanh} \,{\frac {x}{c}}+{\frac {c}{2}}\ln |c^{2}-x^{2}|\qquad {\mbox{(}}|x|<|c|{\mbox{)}}}
∫
a
r
c
o
t
h
x
c
d
x
=
x
a
r
c
o
t
h
x
c
+
c
2
ln
|
x
2
−
c
2
|
(
|
x
|
>
|
c
|
)
{\displaystyle \int \mathrm {arcoth} \,{\frac {x}{c}}\,dx=x\,\mathrm {arcoth} \,{\frac {x}{c}}+{\frac {c}{2}}\ln |x^{2}-c^{2}|\qquad {\mbox{(}}|x|>|c|{\mbox{)}}}
∫
a
r
s
e
c
h
x
c
d
x
=
x
a
r
s
e
c
h
x
c
+
c
ln
x
+
c
2
−
x
2
c
(
x
∈
(
0
,
c
)
)
{\displaystyle \int \mathrm {arsech} \,{\frac {x}{c}}\,dx=x\,\mathrm {arsech} \,{\frac {x}{c}}+c\,\ln \,{\frac {x+{\sqrt {c^{2}-x^{2}}}}{c}}\qquad {\mbox{(}}x\in (0,\,c){\mbox{)}}}
hay
∫
a
r
s
e
c
h
x
c
d
x
=
x
a
r
s
e
c
h
x
c
−
2
c
a
r
c
t
a
n
c
−
x
c
+
x
{\displaystyle \int \mathrm {arsech} \,{\frac {x}{c}}\,dx=x\,\mathrm {arsech} \,{\frac {x}{c}}-2c\,\mathrm {arctan} \,{\sqrt {\frac {c-x}{c+x}}}}
hay
∫
a
r
s
e
c
h
x
c
d
x
=
x
a
r
s
e
c
h
x
c
+
2
c
a
r
c
s
i
n
x
+
c
2
c
{\displaystyle \int \mathrm {arsech} \,{\frac {x}{c}}\,dx=x\,\mathrm {arsech} \,{\frac {x}{c}}+2c\,\mathrm {arcsin} \,{\sqrt {\frac {x+c}{2c}}}}
hay
∫
a
r
s
e
c
h
x
c
d
x
=
x
a
r
s
e
c
h
x
c
−
c
a
r
c
t
a
n
x
c
−
x
c
+
x
x
−
c
{\displaystyle \int \mathrm {arsech} \,{\frac {x}{c}}\,dx=x\,\mathrm {arsech} \,{\frac {x}{c}}-c\,\mathrm {arctan} \,{\frac {x\,{\sqrt {\frac {c-x}{c+x}}}}{x-c}}}
hay
∫
a
r
s
e
c
h
x
c
d
x
=
x
a
r
s
e
c
h
x
c
+
c
a
r
c
s
i
n
x
c
{\displaystyle \int \mathrm {arsech} \,{\frac {x}{c}}\,dx=x\,\mathrm {arsech} \,{\frac {x}{c}}+c\,\mathrm {arcsin} \,{\frac {x}{c}}}
hay
∫
a
r
s
e
c
h
x
c
d
x
=
x
a
r
s
e
c
h
x
c
−
c
a
r
c
t
a
n
c
2
x
2
−
1
{\displaystyle \int \mathrm {arsech} \,{\frac {x}{c}}\,dx=x\,\mathrm {arsech} \,{\frac {x}{c}}-c\,\mathrm {arctan} \,{\sqrt {{\frac {c^{2}}{x^{2}}}-1}}}
∫
a
r
c
s
c
h
x
c
d
x
=
x
a
r
c
s
c
h
x
c
+
c
ln
x
+
x
2
+
c
2
c
(
x
∈
(
0
,
c
)
)
{\displaystyle \int \mathrm {arcsch} \,{\frac {x}{c}}\,dx=x\,\mathrm {arcsch} \,{\frac {x}{c}}+c\,\ln \,{\frac {x+{\sqrt {x^{2}+c^{2}}}}{c}}\qquad {\mbox{(}}x\in (0,\,c){\mbox{)}}}
hay
∫
a
r
c
s
c
h
x
c
d
x
=
x
a
r
c
s
c
h
x
c
+
c
a
r
c
o
t
h
c
2
x
2
+
1
{\displaystyle \int \mathrm {arcsch} \,{\frac {x}{c}}\,dx=x\,\mathrm {arcsch} \,{\frac {x}{c}}+c\,\mathrm {arcoth} \,{\sqrt {{\frac {c^{2}}{x^{2}}}+1}}}
hay
∫
a
r
c
s
c
h
x
c
d
x
=
x
a
r
c
s
c
h
x
c
+
c
|
a
r
s
i
n
h
x
c
|
{\displaystyle \int \mathrm {arcsch} \,{\frac {x}{c}}\,dx=x\,\mathrm {arcsch} \,{\frac {x}{c}}+c|\,\mathrm {arsinh} \,{\frac {x}{c}}|}
Xem thêm
[
sửa
|
sửa mã nguồn
]
Danh sách tích phân
Tham khảo
[
sửa
|
sửa mã nguồn
]
Liên kết ngoài
[
sửa
|
sửa mã nguồn
]
Tính biểu thức tích phân
Bài viết này vẫn còn
sơ khai
. Bạn có thể giúp Wikipedia
mở rộng nội dung
để bài được hoàn chỉnh hơn.
x
t
s
x
t
s
Danh sách tích phân
Hàm sơ cấp
Hàm hữu tỉ
Hàm vô tỉ
Hàm lượng giác
Hàm hypebolic
Hàm mũ
Hàm lôgarít
Hàm lượng giác ngược
Hàm hypebolic ngược
Chúng tôi bán
GIẢM
21%
950.000 ₫
1.200.000 ₫
Mô Hình Cao cấp Portgas D. Ace F.zero - Hỏa Quyền ACE
GIẢM
33%
13.400 ₫
20.000 ₫
Ticket Honkai: Star Rail 2 mặt đầy đủ nhân
J.O.Y-Issue 2: Người kể chuyện tình
GIẢM
44%
4.000 ₫
7.200 ₫
Kính Cường Lực Bảo Vệ Camera cho iPhone
GIẢM
20%
135.200 ₫
169.000 ₫
Tóm tắt và phân tích tác phẩm "Đồi thỏ" - Bản hùng ca về các chiến binh quả cảm trong thế giới muôn loài
GIẢM
15%
102.500 ₫
120.000 ₫
Sách - Nghệ Thuật Kaizen Tuyệt Vời Của Toyota
Bài viết liên quan
Tìm hiểu về Puskas Arena - Sân vận động lớn nhất ở thủ đô Budapest của Hungary
Đây là một sân vận động tương đối mới, được bắt đầu xây dựng vào năm 2016 và hoàn thành vào cuối năm 2019
Tổng quan Ginny - Illusion Connect
Quy tắc và mệnh lệnh chỉ là gông cùm trói buộc cô. Và cô ấy được định mệnh để vứt bỏ những xiềng xích đó.
Có những chuyện chẳng thể nói ra trong Another Country (1984)
Bộ phim được chuyển thể từ vở kịch cùng tên của Julian Mitchell về một gián điệp điệp viên hai mang Guy Burgess
Những quyền năng của Công Lý Vương [Michael]
Thân là kĩ năng có quyền hạn cao nhất, Công Lí Vương [Michael] có thể chi phối toàn bộ những kẻ sở hữu kĩ năng tối thượng thuộc Thiên Sứ hệ