Thông báo
DefZone.Net
DefZone.Net
Feed
Cửa hàng
Location
Video
0
Danh sách tích phân với hàm lôgarít
x
t
s
Danh sách tích phân
Hàm sơ cấp
Hàm hữu tỉ
Hàm vô tỉ
Hàm lượng giác
Hàm hypebolic
Hàm mũ
Hàm lôgarít
Hàm lượng giác ngược
Hàm hypebolic ngược
Dưới đây là
danh sách
tích phân
với
hàm lôgarít
.
Chú ý:
bài này quy ước
x
> 0.
∫
ln
c
x
d
x
=
x
ln
c
x
−
x
{\displaystyle \int \ln cx\,dx=x\ln cx-x}
∫
(
ln
x
)
2
d
x
=
x
(
ln
x
)
2
−
2
x
ln
x
+
2
x
{\displaystyle \int (\ln x)^{2}\;dx=x(\ln x)^{2}-2x\ln x+2x}
∫
(
ln
c
x
)
n
d
x
=
x
(
ln
c
x
)
n
−
n
∫
(
ln
c
x
)
n
−
1
d
x
{\displaystyle \int (\ln cx)^{n}\;dx=x(\ln cx)^{n}-n\int (\ln cx)^{n-1}dx}
∫
d
x
ln
x
=
ln
|
ln
x
|
+
ln
x
+
∑
i
=
2
∞
(
ln
x
)
i
i
⋅
i
!
{\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{i=2}^{\infty }{\frac {(\ln x)^{i}}{i\cdot i!}}}
∫
d
x
(
ln
x
)
n
=
−
x
(
n
−
1
)
(
ln
x
)
n
−
1
+
1
n
−
1
∫
d
x
(
ln
x
)
n
−
1
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
x
m
ln
x
d
x
=
x
m
+
1
(
ln
x
m
+
1
−
1
(
m
+
1
)
2
)
(
m
≠
−
1
)
{\displaystyle \int x^{m}\ln x\;dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(}}m\neq -1{\mbox{)}}}
∫
x
m
(
ln
x
)
n
d
x
=
x
m
+
1
(
ln
x
)
n
m
+
1
−
n
m
+
1
∫
x
m
(
ln
x
)
n
−
1
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}(\ln x)^{n}\;dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(}}m\neq -1{\mbox{)}}}
∫
(
ln
x
)
n
d
x
x
=
(
ln
x
)
n
+
1
n
+
1
(
n
≠
−
1
)
{\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(}}n\neq -1{\mbox{)}}}
∫
ln
x
d
x
x
m
=
−
ln
x
(
m
−
1
)
x
m
−
1
−
1
(
m
−
1
)
2
x
m
−
1
(
m
≠
1
)
{\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}}
∫
(
ln
x
)
n
d
x
x
m
=
−
(
ln
x
)
n
(
m
−
1
)
x
m
−
1
+
n
m
−
1
∫
(
ln
x
)
n
−
1
d
x
x
m
(
m
≠
1
)
{\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}}
∫
x
m
d
x
(
ln
x
)
n
=
−
x
m
+
1
(
n
−
1
)
(
ln
x
)
n
−
1
+
m
+
1
n
−
1
∫
x
m
d
x
(
ln
x
)
n
−
1
(
n
≠
1
)
{\displaystyle \int {\frac {x^{m}\;dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
d
x
x
ln
x
=
ln
|
ln
x
|
{\displaystyle \int {\frac {dx}{x\ln x}}=\ln |\ln x|}
∫
d
x
x
n
ln
x
=
ln
|
ln
x
|
+
∑
i
=
1
∞
(
−
1
)
i
(
n
−
1
)
i
(
ln
x
)
i
i
⋅
i
!
{\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln |\ln x|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(n-1)^{i}(\ln x)^{i}}{i\cdot i!}}}
∫
d
x
x
(
ln
x
)
n
=
−
1
(
n
−
1
)
(
ln
x
)
n
−
1
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
sin
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
−
cos
(
ln
x
)
)
{\displaystyle \int \sin(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}
∫
cos
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
+
cos
(
ln
x
)
)
{\displaystyle \int \cos(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}
Xem thêm
[
sửa
|
sửa mã nguồn
]
Danh sách tích phân
Tham khảo
[
sửa
|
sửa mã nguồn
]
Liên kết ngoài
[
sửa
|
sửa mã nguồn
]
Tính biểu thức tích phân
Bài viết này vẫn còn
sơ khai
. Bạn có thể giúp Wikipedia
mở rộng nội dung
để bài được hoàn chỉnh hơn.
x
t
s
Chúng tôi bán
GIẢM
18%
135.000 ₫
165.000 ₫
Áo Bóng Đá CLB Newcastle United
GIẢM
44%
33.000 ₫
59.000 ₫
Bộ quần áo thể thao - CLB Real Madrid
GIẢM
20%
143.200 ₫
179.000 ₫
Power vs Force – khi “thử cơ” bá đạo hơn “cầu cơ”
GIẢM
30%
699.000 ₫
999.000 ₫
Bàn phím Yun Jin Keycap Cherry Profile Genshin Impact Theme Anime PBT Dye Sub
Bộ Quần Áo Bóng Đá Thể Thao CLB AL - Nassr FC CR7
GIẢM
8%
146.000 ₫
159.000 ₫
"Seneca - Những bức thư đạo đức": Cuốn sách dành cho bạn, người đang mong cầu hạnh phúc
Bài viết liên quan
Tổng quan về các nền tảng game
Bài viết này ghi nhận lại những hiểu biết sơ sơ của mình về các nền tảng game dành cho những ai mới bắt đầu chơi game
Danh sách những người sở hữu sức mạnh Titan trong Shingeki no Kyojin
Sức mạnh Titan được kế thừa qua nhiều thế hệ kể từ khi bị chia ra từ Titan Thủy tổ của Ymir Fritz
Tại sao Hamas lại tấn công Israel?
Vào ngày 7 tháng 10, một bình minh mới đã đến trên vùng đất Thánh, nhưng không có ánh sáng nào có thể xua tan bóng tối của sự hận thù và đau buồn.
Nhân vật Xích Luyện / 赤练 - Tần Thời Minh Nguyệt
Xích Luyện xuất thân là công chúa nước Hàn, phong hiệu: Hồng Liên. Là con của Hàn Vương, em gái của Hàn Phi