Khí nhà kính

Hiệu ứng nhà kính của bức xạ Mặt Trời trên bề mặt Trái Đất do phát thải khí nhà kính.

Khí nhà kính (đôi khi viết tắt là KNK; tiếng Anh: greenhouse gas (GHG hoặc GhG)) là một loại khí hấp thụ và phát ra năng lượng bức xạbước sóng nhiệt hồng ngoại, gây ra hiệu ứng nhà kính.[1] Các khí nhà kính chính trong bầu khí quyển của Trái Đất bao gồm: hơi nước, carbon dioxide (CO2), methan (CH4), dinitơ monoxide (N2O), ozon (O3) và các khí CFC. Nếu không có khí nhà kính, nhiệt độ trung bình của bề mặt Trái Đất sẽ vào khoảng −18 °C (0 °F),[2] thay vì mức trung bình hiện tại là 15 °C (59 °F).[3][4][5] Trong hệ Mặt Trời, bầu khí quyển của Sao Kim, Sao HỏaTitan cũng chứa khí nhà kính.[6]

Các hoạt động của con người kể từ khi bắt đầu Cách mạng công nghiệp (khoảng năm 1750) đã làm tăng 45% nồng độ carbon dioxide trong khí quyển, từ 280 ppm vào năm 1750 lên 415 ppm vào năm 2019.[7] Lần cuối cùng nồng độ carbon dioxide trong khí quyển cao như vậy là hơn 3 triệu năm trước.[8] Sự gia tăng này vẫn đã xảy ra mặc dù đã hấp thụ hơn một nửa lượng khí thải bởi các "bể chìm" tự nhiên khác nhau liên quan đến chu trình carbon.[9][10] Phần lớn lượng khí thải carbon dioxide do con người thải ra từ quá trình đốt nhiên liệu hóa thạch, chủ yếu là than, dầukhí tự nhiên, cộng với việc phá rừng, thay đổi sử dụng đất, xói mòn đấtnông nghiệp (bao gồm cả chăn nuôi).[11][12] Nguồn thải khí methan do con người gây ra hàng đầu là nông nghiệp chăn nuôi, tiếp theo là phát thải từ khí đốt, dầu mỏ, than đá và các ngành công nghiệp khác, chất thải rắn, nước thải và sản xuất lúa gạo.[13] Trồng lúa truyền thống là nguồn thải KNK lớn thứ hai trong nông nghiệp sau chăn nuôi. Sản xuất lúa gạo truyền thống trên toàn cầu chiếm khoảng 1,5% lượng khí thải gây hiệu ứng nhà kính, tương đương với tất cả lượng khí thải của ngành hàng không. Nguồn của nó là methan, được tạo ra bởi chất hữu cơ phân hủy dưới nước trong các cánh đồng ngập nước.[14]

Với tốc độ phát thải hiện tại, nhiệt độ có thể tăng thêm 2 °C (3,6 °F), mức mà Ủy ban liên chính phủ về biến đổi khí hậu (IPCC) của Liên Hợp Quốc đã chỉ định để tránh mức "nguy hiểm", vào năm 2036.[15]

Các loại khí trong bầu khí quyển của Trái Đất

[sửa | sửa mã nguồn]

Khí không gây hiệu ứng nhà kính

[sửa | sửa mã nguồn]

Thành phần chính của khí quyển Trái Đất là nitơ (N2) (78%), oxy (O2) (21%), và argon (Ar) (0.9%), không phải là khí nhà kính vì các phân tử có chứa hai nguyên tử của cùng một nguyên tố như N2 và O2 không có sự thay đổi về sự phân bố các điện tích của chúng khi chúng dao động, và các chất khí đơn thể như Ar không có chế độ dao động. Do đó chúng hầu như hoàn toàn không bị ảnh hưởng bởi bức xạ hồng ngoại. Một số phân tử chỉ chứa hai nguyên tử của các nguyên tố khác nhau, chẳng hạn như carbon monoxide (CO) và hydro chloride (HCl), hấp thụ bức xạ hồng ngoại, nhưng những phân tử này tồn tại rất ngắn trong khí quyển do khả năng phản ứng hoặc độ hòa tan của chúng. Do đó, chúng không đóng góp đáng kể vào hiệu ứng nhà kính và thường bị bỏ qua khi thảo luận về khí nhà kính.

Khí nhà kính

[sửa | sửa mã nguồn]

Khí nhà kính là những khí hấp thụ và phát ra bức xạ hồng ngoại trong dải bước sóng do Trái Đất phát ra.[1] Carbon dioxide (0,04%), dinitơ monoxide, methanozon là những khí vi lượng chiếm gần 1/10 của 1% bầu khí quyển Trái Đất và có hiệu ứng nhà kính đáng kể. (Xem thêm: Ấm lên toàn cầuCarbon dioxide trong khí quyển Trái Đất).

Tỷ lệ phần trăm các khí gây hiệu ứng nhà kính:[16]

Khí
 
Công thức
 
Tỷ lệ đóng góp
(%)
Hơi nước H2O 49 – 71%  
Carbon dioxide CO2 22 – 29%
Methandinitơ monoxide CH4 + N2O 4 – 8%  
Ozon O3 7 – 10%  
Chlorofluorocarbon CFC
Hydrofluorocarbon bao gồm HCFC và HFC

Ngoài ra còn có các khí sulfur hexaflorua, hydrofluorocarbonperfluorocarbon.

Nồng độ trong khí quyển được xác định bởi sự cân bằng giữa các nguồn (phát thải khí từ các hoạt động của con người và các hệ thống tự nhiên) và chìm (loại bỏ khí khỏi khí quyển bằng cách chuyển đổi thành một hợp chất hóa học khác hoặc sự hấp thụ của các khối nước).[17] Tỷ lệ phát xạ còn lại trong khí quyển sau một thời gian xác định là "phần trong không khí" (AF). Phần trong không khí hàng năm là tỷ lệ giữa sự gia tăng khí quyển trong một năm nhất định với tổng lượng khí thải của năm đó. Tính đến năm 2006, phần CO2 trong không khí hàng năm là khoảng 0,45. Tỷ lệ phần trăm trong không khí hàng năm tăng với tốc độ 0,25 ± 0,21% mỗi năm trong giai đoạn 1959–2006.[18]

Tỷ lệ phần trăm các hoạt động của loài người đối với sự làm tăng nhiệt độ Trái Đất:

  • Sử dụng năng lượng:50%
  • Công nghiệp: 24%
  • Nông nghiệp:13%
  • Phá rừng: 14%

Hiệu ứng bức xạ gián tiếp

[sửa | sửa mã nguồn]

Một số khí có hiệu ứng bức xạ gián tiếp (cho dù bản thân chúng có phải là khí nhà kính hay không). Điều này xảy ra theo hai cách chính. Một là khi chúng phân hủy trong khí quyển, tạo ra một khí nhà kính khác. Ví dụ, methan và carbon monoxide (CO) bị oxy hóa để tạo ra carbon dioxide (và quá trình oxy hóa methan cũng tạo ra hơi nước). Quá trình oxy hóa CO thành CO2 trực tiếp tạo ra sự gia tăng bức xạ rõ ràng mặc dù lý do là rất nhỏ. Đỉnh của bức xạ nhiệt IR từ bề mặt Trái Đất rất gần với dải hấp thụ dao động mạnh của CO2 (bước sóng 15 micron, hoặc số sóng 667 cm−1) Mặt khác, dải dao động CO đơn lẻ chỉ hấp thụ IR ở các bước sóng ngắn hơn nhiều (4,7 micrômét, hay 2145 cm−1), nơi phát ra năng lượng bức xạ từ bề mặt Trái Đất thấp hơn ít nhất một hệ số. Quá trình oxy hóa methan thành CO2, yêu cầu phản ứng với gốc OH, tạo ra sự giảm ngay lập tức sự hấp thụ và phát xạ bức xạ vì CO2 là khí nhà kính yếu hơn methan. Tuy nhiên, sự oxy hóa CO và CH4 được quấn vào nhau vì cả hai đều tiêu thụ các gốc OH. Trong mọi trường hợp, việc tính toán tổng hiệu ứng bức xạ bao gồm cả trực tiếp và gián tiếp một cách ép buộc.

Loại hiệu ứng gián tiếp thứ hai xảy ra khi các phản ứng hóa học trong khí quyển liên quan đến các khí này làm thay đổi nồng độ của các khí nhà kính. Ví dụ, sự phá hủy các hợp chất hữu cơ bay hơi không methan (NMVOC) trong khí quyển có thể tạo ra ozon. Kích thước của hiệu ứng gián tiếp có thể phụ thuộc mạnh mẽ vào vị trí và thời điểm phát ra khí.[19]

Methan có tác dụng gián tiếp ngoài việc tạo thành CO2. Hóa chất chính phản ứng với methan trong khí quyển là gốc hydroxyl (OH), do đó càng nhiều methan có nghĩa là nồng độ OH giảm xuống. Một cách hiệu quả, methan làm tăng thời gian tồn tại trong khí quyển của chính nó và do đó tác dụng bức xạ tổng thể của nó. Quá trình oxy hóa methan có thể tạo ra cả ozon và nước; và là nguồn hơi nước chính trong tầng bình lưu thường khô. CO và NMVOC tạo ra CO2 khi chúng bị oxy hóa. Chúng loại bỏ OH khỏi khí quyển, dẫn đến nồng độ khí methan cao hơn. Đáng ngạc nhiên của điều này là khả năng nóng lên toàn cầu của CO gấp ba lần so với CO2[20] Quá trình chuyển đổi NMVOCs thành carbon dioxide tương tự cũng có thể dẫn đến sự hình thành ozontầng đối lưu. Halocarbon có ảnh hưởng gián tiếp vì chúng phá hủy ozon ở tầng bình lưu. Cuối cùng, hydro có thể dẫn đến sản xuất ozon và CH4 tăng cũng như tạo ra hơi nước ở tầng bình lưu.[19]

Sự đóng góp của mây vào hiệu ứng nhà kính của Trái Đất

[sửa | sửa mã nguồn]

Không phải khí gây ra hiệu ứng nhà kính trên Trái Đất, các đám mây, cũng hấp thụ và phát ra bức xạ hồng ngoại và do đó có ảnh hưởng đến các đặc tính bức xạ khí nhà kính. Mây là những giọt nước hoặc tinh thể băng lơ lửng trong khí quyển.[21][22] Ví dụ, hiệu ứng bức xạ trực tiếp của một khối lượng methan mạnh hơn khoảng 84 lần so với cùng một khối lượng khí carbon dioxide trong khoảng thời gian 20 năm[23] nhưng nồng độ nhỏ hơn nhiều nên tổng hiệu ứng bức xạ trực tiếp của nó cho đến nay đã nhỏ hơn, một phần là do thời gian tồn tại trong khí quyển ngắn hơn trong điều kiện không hấp thụ thêm carbon. Mặt khác, ngoài tác động bức xạ trực tiếp, methan còn có tác động bức xạ gián tiếp lớn vì nó góp phần hình thành ozon.[24] lập luận rằng đóng góp vào biến đổi khí hậu từ khí mê-tan ít nhất là gấp đôi các ước tính trước đây của tác động này.[25]

Khi xếp hạng theo mức độ đóng góp trực tiếp vào hiệu ứng nhà kính, điều quan trọng nhất là:[16]

Hợp chất Công thức Nồng độ trong khí quyển (ppm) Tỉ lệ (%)
Hơi nướcmây H2O 10–50,000(A) 36–72%  
Carbon dioxide CO2 ~400 9–26%
Methan CH4 ~1.8 4–9%
Ozon O3 2–8(B) 3–7%

Chú thích:

(A) Hơi nước thay đổi cục bộ mạnh.[26]

(B) Nồng độ trong tầng bình lưu. Khoảng 90% ozon trong bầu khí quyển của Trái Đất nằm ở tầng bình lưu.

Ngoài các khí nhà kính chính được liệt kê ở trên, các khí nhà kính khác bao gồm lưu huỳnh hexaflorua, hydrofluorocarbonperfluorocarbon. Một số khí nhà kính thường không được liệt kê. Ví dụ, nitơ triflorua có khả năng làm nóng lên toàn cầu cao (GWP) nhưng chỉ hiện diện với số lượng rất nhỏ.[27]

Tỷ lệ ảnh hưởng trực tiếp tại một thời điểm nhất định

[sửa | sửa mã nguồn]

Không thể nói rằng một loại khí nhất định gây ra một tỷ lệ chính xác của hiệu ứng nhà kính. Điều này là do một số chất khí hấp thụ và phát ra bức xạ ở cùng tần số với những chất khí khác, do đó, tổng hiệu ứng nhà kính không chỉ đơn giản là tổng ảnh hưởng của từng loại khí. Các đầu cao hơn của các dải được trích dẫn chỉ dành cho từng khí; các đầu dưới tạo ra sự xen phủ với các khí khác.[16][22] Ngoài ra, một số khí, chẳng hạn như methan, được biết là có tác động gián tiếp lớn và vẫn đang được định lượng.[28]

Thời gian ảnh hưởng

[sửa | sửa mã nguồn]

Ngoài hơi nước (có thời gian ảnh hưởng khoảng chín ngày),[29] các khí nhà kính chính được trộn đều và mất nhiều năm để thoát ra khỏi khí quyển.[30] Mặc dù không dễ dàng để biết chính xác thời gian các khí nhà kính thoát khỏi bầu khí quyển là bao lâu, nhưng cũng đã có những ước tính cho các khí nhà kính chính.[31] định nghĩa thời gian tồn tại

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ a b “IPCC AR4 SYR Appendix Glossary” (PDF). Bản gốc (PDF) lưu trữ ngày 17 tháng 11 năm 2018. Truy cập ngày 14 tháng 12 năm 2008.
  2. ^ “NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide”. www.giss.nasa.gov. Bản gốc lưu trữ ngày 12 tháng 1 năm 2005. Truy cập ngày 26 tháng 4 năm 2016.
  3. ^ Karl TR, Trenberth KE (2003). “Modern Global Climate Change”. Science. 302 (5651): 1719–1723. doi:10.1126/science.1090228.
  4. ^ Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T and Prather M (2007). Historical Overview of Climate Change Science In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL, editors) (PDF). Cambridge University Press. Bản gốc (PDF) lưu trữ ngày 26 tháng 11 năm 2018. Truy cập ngày 14 tháng 12 năm 2008.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  5. ^ “NASA Science Mission Directorate article on the water cycle”. Bản gốc lưu trữ ngày 17 tháng 1 năm 2009. Truy cập ngày 14 tháng 8 năm 2009.
  6. ^ Eddie Schwieterman. “Comparing the Greenhouse Effect on Earth, Mars, Venus, and Titan: Present Day and through Time” (PDF). Bản gốc (PDF) lưu trữ ngày 30 tháng 1 năm 2015.
  7. ^ "CO2 in the atmosphere just exceeded 415 parts per million for the first time in human history". Truy cập ngày 31 tháng 8 năm 2019.
  8. ^ "Climate Change: Atmospheric Carbon Dioxide | NOAA Climate.gov". www.climate.gov. Truy cập ngày 2 tháng 3 năm 2020.
  9. ^ "Frequently asked global change questions" Lưu trữ 2011-08-17 tại Wayback Machine. Carbon Dioxide Information Analysis Center.
  10. ^ ESRL Web Team (ngày 14 tháng 1 năm 2008). "Trends in carbon dioxide". Esrl.noaa.gov. Truy cập ngày 11 tháng 9 năm 2011.
  11. ^ "Global Greenhouse Gas Emissions Data". U.S. Environmental Protection Agency. Retrieved ngày 30 tháng 12 năm 2019.The burning of coal, natural gas, and oil for electricity and heat is the largest single source of global greenhouse gas emissions.
  12. ^ "AR4 SYR Synthesis Report Summary for Policymakers – 2 Causes of change". ipcc.ch. Archived from the original on ngày 28 tháng 2 năm 2018. Truy cập 9 October2015.
  13. ^ https://www.globalmethane.org/documents/gmi-mitigation-factsheet.pdf
  14. ^ Reed, John (ngày 25 tháng 6 năm 2020). "Thai rice farmers step up to tackle carbon footprint". Financial Times. Truy cập ngày 25 tháng 6 năm 2020
  15. ^ Mann, Michael E. (ngày 1 tháng 4 năm 2014). "Earth Will Cross the Climate Danger Threshold by 2036". Scientific American. Truy cập ngày 30 tháng 8 năm 2016
  16. ^ a b c J.T. Kiehl & Kevin E. Trenberth (1997). “Earth's annual global mean energy budget” (PDF). Bulletin of the American Meteorological Society. 78 (2): 197–208. Bibcode:1997BAMS...78..197K. doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2. ISSN 1520-0477. Bản gốc (PDF) lưu trữ ngày 30 tháng 3 năm 2006. Truy cập ngày 1 tháng 5 năm 2006.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  17. ^ "FAQ 7.1". p. 14 in IPCC AR4 WG1 (2007)
  18. ^ Canadell, J.G.; Le Quere, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. (2007). "Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks". Proc. Natl. Acad. Sci. USA. 104 (47): 18866–70. Bibcode:2007PNAS..10418866C. doi:10.1073/pnas.0702737104. PMC 2141868. PMID 17962418.
  19. ^ a b Forster, P.; et al. (2007). "2.10.3 Indirect GWPs". Changes in Atmospheric Constituents and in Radiative Forcing. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Truy cập ngày 2 tháng 12 năm 2012.
  20. ^ MacCarty, N. "Laboratory Comparison of the Global-Warming Potential of Six Categories of Biomass Cooking Stoves" (PDF). Approvecho Research Center. Archived from the original (PDF) on ngày 11 tháng 11 năm 2013.
  21. ^ Kiehl, J.T.; Kevin E. Trenberth (1997). "Earth's annual global mean energy budget". Bulletin of the American Meteorological Society. 78 (2): 197–208. Bibcode:1997BAMS...78..197K. doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
  22. ^ a b "Water vapour: feedback or forcing?". RealClimate. ngày 6 tháng 4 năm 2005. Truy cập ngày 1 tháng 5 năm 2006.
  23. ^ "Appendix 8.A" (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report. p. 731.
  24. ^ Shindell, Drew T. (2005). "An emissions-based view of climate forcing by methane and tropospheric ozone" Lưu trữ 2005-09-11 tại Wayback Machine. Geophysical Research Letters. 32 (4): L04803. Bibcode:2005GeoRL..32.4803S. doi:10.1029/2004GL021900
  25. ^ "Methane's Impacts on Climate Change May Be Twice Previous Estimates". Lưu trữ 2005-09-11 tại Wayback Machine Nasa.gov. ngày 30 tháng 11 năm 2007. Truy cập ngày 16 tháng 10 năm 2010.
  26. ^ Wallace, John M. and Peter V. Hobbs. Atmospheric Science; An Introductory Survey. Elsevier. Second Edition, 2006. ISBN 978-0127329512. Chapter 1
  27. ^ Prather, Michael J.; J Hsu (2008). "NF3, the greenhouse gas missing from Kyoto". Geophysical Research Letters. 35 (12): L12810. Bibcode:2008GeoRL..3512810P. doi:10.1029/2008GL034542
  28. ^ Isaksen, Ivar S.A.; Michael Gauss; Gunnar Myhre; Katey M. Walter Anthony; Carolyn Ruppel (ngày 20 tháng 4 năm 2011). "Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions" (PDF). Global Biogeochemical Cycles. 25 (2): n/a. Bibcode:2011GBioC..25.2002I. doi:10.1029/2010GB003845. hdl:1912/4553. Archived from the original (PDF) on ngày 4 tháng 3 năm 2016. Truy cập ngày 29 tháng 7 năm 2011.
  29. ^ "AGU Water Vapor in the Climate System". Eso.org. ngày 27 tháng 4 năm 1995. Truy cập ngày 11 tháng 9 năm 2011.
  30. ^ Betts (2001). "6.3 Well-mixed Greenhouse Gases". Chapter 6 Radiative Forcing of Climate Change. Working Group I: The Scientific Basis IPCC Third Assessment Report – Climate Change 2001. UNEP/GRID-Arendal – Publications. Archived from the original on ngày 29 tháng 6 năm 2011. Truy cập ngày 16 tháng 10 năm 2010
  31. ^ Jacob, Daniel (1999). Introduction to atmospheric chemistry. Princeton University Press. pp. 25–26. ISBN 978-0691001852. Archived from the original on ngày 2 tháng 9 năm 2011.
Chúng tôi bán
Bài viết liên quan
Cẩm nang để một mình - đừng cố để có một người bạn
Cẩm nang để một mình - đừng cố để có một người bạn
Tôi đã từng là một người cực kì hướng ngoại. Đối với thế giới xung quanh, tôi cảm thấy đơn độc đến vô vàn
Một số thông tin đáng lưu ý về tính chuẩn xác khi nói về Lôi Thần của Inazuma - Raiden Ei
Một số thông tin đáng lưu ý về tính chuẩn xác khi nói về Lôi Thần của Inazuma - Raiden Ei
Vị thần của vĩnh hằng tuy vô cùng nổi tiếng trong cộng đồng người chơi, nhưng sự nổi tiếng lại đi kèm tai tiếng
Làm việc tại cơ quan ngoại giao thì thế nào?
Làm việc tại cơ quan ngoại giao thì thế nào?
Bạn được tìm hiểu một nền văn hóa khác và như mình nghĩ hiện tại là mình đang ở trong nền văn hóa đó luôn khi làm việc chung với những người nước ngoài này
Nhân vật Delta -  The Eminence In Shadow
Nhân vật Delta - The Eminence In Shadow
Delta (デルタ, Deruta?) (Δέλτα), trước đây gọi là Sarah (サラ, Sara?), là thành viên thứ tư của Shadow Garden