Theo mêtric Kerr, những lỗ đen quay có tính chất làm kéo hệ quy chiếu của không thời gian bao quanh nó, một hệ quả kỳ lạ của thuyết tương đối rộng. Một trong hai mục tiêu của thí nghiệm bằng tàu Gravity Probe B đó là đo được hiệu ứng này với độ chính xác 10%. Nói một cách sơ lược, hiệu ứng này tiên đoán những vật thể ở gần khối lượng quay sẽ quay cùng với chiều quay của vật thể chính, điều này không phải vì do một lực hay ngẫu lực nào tác động lên mà là do độ cong của không thời gian bị tác động bởi vật thể quay đó. Càng nằm gần lỗ đen quay, mọi đối tượng — ngay cả ánh sáng — đều phải quay theo nó; hay vùng này gọi là vùng sản công.[2][3]
Các lỗ đen quay miêu tả bởi mêtric Kerr có chân trời sự kiện và vùng kỳ dị hấp dẫn; trong đó kích thước của chân trời sự kiện phụ thuộc vào khối lượng và mômen động lượng của nó. Hình dáng của chân trời sự kiện có dạng hình phỏng cầu hơn là hình cầu. Chân trời sự kiện chỉ là mặt kì dị tọa độ; nó không phải là kì dị vật lý, những vật rơi qua mặt này không thể quay trở lại hay người ở ngoài lỗ đen không thể biết bên trong lỗ đen chứa những gì. Lỗ đen quay có hai chân trời sự kiện, bên trong và bên ngoài, và những chân trời này có thể biến mất bởi cách lựa chọn hệ tọa độ. Những vật nằm giữa hai chân trời sự kiện phải quay cùng chiều với chiều quay lỗ đen như nêu ở trên; và đặc điểm này cho phép thu năng lượng từ lỗ đen quay, hay còn gọi là cơ chế Penrose.[2]
Bốn nghiệm chính xác miêu tả lỗ đen của phương trình chân không Einstein được tổng hợp lại bảng sau:
Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius & Herlt, Eduard (2003). Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press. ISBN0-521-46136-7.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
Adler, Ronald; Bazin, Maurice; Schiffer, Menahem (1975). Introduction to General Relativity . New York: McGraw-Hill. ISBN0-07-000423-4. See chapter 7.
Penrose, R. (1968). ed C. de Witt and J. Wheeler (biên tập). Battelle Rencontres. W. A. Benjamin, New York. tr. 222.
Perez, Alejandro; Moreschi, Osvaldo M. (2000). "Characterizing exact solutions from asymptotic physical concepts". arΧiv:Dec 2000 gr-qc/001210027 Dec 2000. Characterization of three standard families of vacuum solutions as noted above.
Sotiriou, Thomas P.; Apostolatos, Theocharlà một. (2004). “Corrections and Comments on the Multipole Moments of Axisymmetric Electrovacuum Spacetimes”. Class. Quant. Grav. 21 (24): 5727–5733. arXiv:gr-qc/0407064. Bibcode:2004CQGra..21.5727S. doi:10.1088/0264-9381/21/24/003. arXiv eprint Gives the relativistic multipole moments for the Ernst vacuums (plus the electromagnetic and gravitational relativistic multipole moments for the charged generalization).
Nếu mình không thể làm gì, thì cứ đà này mình sẽ kéo cả lớp D liên lụy mất... Những kẻ mà mình xem là không cùng đẳng cấp và vô giá trị... Đến khi có chuyện thì mình không chỉ vô dụng mà lại còn dùng bạo lực ra giải quyết. Thật là ngớ ngẩn...