Phương trình trường Einstein

Phương trình trường Einstein hay phương trình Einstein là một hệ gồm 10 phương trình trong thuyết tương đối rộng của Albert Einstein miêu tả tương tác cơ bảnhấp dẫn bằng kết quả của sự cong của không thời gian do có mặt của vật chấtnăng lượng.[1] Einstein là người đầu tiên công bố phương trình năm 1915[2] dưới dạng phương trình tenxơ, phương trình Einstein đặt độ cong của không-thời gian (biểu diễn bởi tenxơ Einstein) bằng với năng lượng và động lượng bên trong không thời gian đó (biểu diễn bởi tenxơ ứng suất-năng lượng).

Tương tự như cách các trường điện từ được xác định bằng các điện tíchdòng điện thông qua phương trình Maxwell, phương trình Einstein được sử dụng để xác định hình học của không-thời gian do sự có mặt của khối lượng-năng lượng và động lượng tuyến tính, theo đó chúng xác định lên tenxơ mêtric của không thời gian khi cho một sự sắp xếp ứng suất-năng lượng trong không thời gian. Mối liên hệ giữa tenxơ mêtric và tenxơ Einstein cho phép phương trình trường Einstein được viết dưới dạng tập hợp các phương trình vi phân riêng phần phi tuyến khi sử dụng theo cách này. Nghiệm của phương trình trường là các thành phần của một tenxơ mêtric. Quỹ đạo quán tính của các hạt và đường tia của các bức xạ (đường trắc địa) trong hình học không thời gian được tính toán nhờ sử dụng phương trình đường trắc địa.

Phương trình Einstein tuân theo định luật bảo toàn năng lượng-động lượng định xứ (cục bộ), nó thu về định luật vạn vật hấp dẫn của Newton khi trường hấp dẫn là yếu và các vận tốc nhỏ so với tốc độ ánh sáng.[3]

Các kỹ thuật giải phương trình trường Einstein bao gồm các giả sử đơn giản hóa như không thời gian đối xứng. Những lớp đặc biệt của các nghiệm chính xác thường được nghiên cứu khi chúng thiết lập nhiều mô hình của hiện tượng hấp dẫn, như các lỗ đen quay và vũ trụ giãn nở. Những đơn giản hóa khác được thực hiện trong việc xấp xỉ không thời gian thực về không thời gian phẳng Minkowski với một nhiễu loạn nhỏ, dẫn đến phương pháp tuyến tính hóa phương trình trường Einstein. Phương pháp này dùng để nghiên cứu hiện tượng sóng hấp dẫn.

Dạng toán học

[sửa | sửa mã nguồn]

Phương trình trường Einstein có thể được viết theo dạng:[4][5]

Trong đó:

Tenxơ đối xứng chỉ chứa 10 thành phần độc lập, phương trình tenxơ của Einstein tương đương với 1 hệ 10 phương trình vô hướng độc lập. Cùng với 4 đồng nhất thức Bianchi, tương ứng với cách chọn 4 tọa độ tự do, làm cho thực sự có 6 phương trình độc lập không suy biến khi viết phương trình trường Einstein dưới dạng tường minh.

Tenxơ Einstein được định nghĩa bằng:

Nó là một tenxơ đối xứng hạng hai và là hàm của tenxơ mêtric. Phương trình Einstein khi đó viết thành

Cho biết trước một sự sắp đặt vật chất, tức là biết tenxơ năng lượng-xung lượng Tμν, có thể coi phương trình này tìm nghiệm tenxơ mêtric gμν (đại diện cho không thời gian và cũng thể hiện trường hấp dẫn), do tenxơ Ricci và vô hướng Ricci đều phụ thuộc vào gμν một cách phức tạp.

Biết được tenxơ mêtric gμν, có thể biết được một chất điểm tự do đi theo đường trắc địa trong không thời gian tương ứng với gμν như nào. Trong thuyết tương đối rộng, chất điểm tự do không chịu ngoại lực tác động, và lực hấp dẫn không được coi là một ngoại lực tác động lên vật mà chỉ là hiệu ứng của đường trắc địa cong trong không thời gian cong; đường đi cong của chất điểm tự do có thể coi như tác động của lực hấp dẫn trong cơ học cổ điển.

Việc giải phương trình Einstein và hiểu các nghiệm là công việc cơ bản trong môn vũ trụ học. Một số lời giải cho các trường hợp đặc biệt có thể kể đến là nghiệm Schwarzschild (chân không xung quanh một thiên thể không quay, không tích điện), nghiệm Reissner-Nordströmnghiệm Kerr. Khi không thời gian hoàn toàn là chân không (không có vật chất), lời giải thu về mêtric Minkowski của không thời gian phẳng.

Phương trình trường Einstein tiệm cận về định luật vạn vật hấp dẫn Newton trong phép xấp xỉ trường yếuxấp xỉ chuyển động chậm (so với tốc độ ánh sáng). Thực tế là hằng số hấp dẫn và các hằng số khác được dùng trong phương trình trường Einstein để khớp nó với định luật vạn vật hấp dẫn Newton trong hai phép xấp xỉ trên.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Einstein, Albert (1916). “The Foundation of the General Theory of Relativity”. Annalen der Physik. Bản gốc (PDF) lưu trữ ngày 6 tháng 2 năm 2012.
  2. ^ Einstein, Albert (ngày 25 tháng 11 năm 1915). “Die Feldgleichungen der Gravitation”. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin: 844–847. Bản gốc lưu trữ ngày 27 tháng 10 năm 2016. Truy cập ngày 12 tháng 9 năm 2006.
  3. ^ Carroll, Sean (2004). Spacetime and Geometry - An Introduction to General Relativity. tr. 151–159. ISBN 0-8053-8732-3.
  4. ^ Einstein, Albert (1916). “The Foundation of the General Theory of Relativity”. Annalen der Physik. 354 (7): 769. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702. Bản gốc (PDF) lưu trữ ngày 6 tháng 2 năm 2012.
  5. ^ Grøn, Øyvind; Hervik, Sigbjorn (2007). Einstein's General Theory of Relativity: With Modern Applications in Cosmology . Springer Science & Business Media. tr. 180. ISBN 978-0-387-69200-5.

Liên kết ngoài

[sửa | sửa mã nguồn]

(tiếng Anh)

(tiếng Việt)

Chúng tôi bán
Bài viết liên quan
Nguồn gốc Mặt Nạ Kháng Ma trong Tensura
Nguồn gốc Mặt Nạ Kháng Ma trong Tensura
Ngay từ khi bắt đầu Tensura, hẳn chúng ta đã quá quen thuộc với hình ảnh Shizu và chiếc mặt nạ, thứ mà sau này được cô để lại cho Rimuru
[Review] Visual Novel Steins;Gate Zero – Lời hứa phục sinh
[Review] Visual Novel Steins;Gate Zero – Lời hứa phục sinh
Steins;Gate nằm trong series Sci-fi của Nitroplus với chủ đề du hành thời gian. Sau sự thành công vang dội ở cả mặt Visual Novel và anime
Chán việc, thì làm gì? gì cũng được, nhưng đừng chán mình!!!
Chán việc, thì làm gì? gì cũng được, nhưng đừng chán mình!!!
Dù mệt, dù cực nhưng đáng và phần nào giúp erdophin được tiết ra từ não bộ để tận hưởng niềm vui sống
[Genshin Impact] Tại sao Eula lại hot đến vậy
[Genshin Impact] Tại sao Eula lại hot đến vậy
Bài viết sẽ tổng hợp mọi nội dung liên quan đến nhân vật mới Eula trong Genshin Impact