Vô hạn, vô cực, vô tận (ký hiệu: ∞) là một khái niệm mô tả một cái gì đó mà không có bất kỳ giới hạn nào, hoặc một cái gì đó lớn hơn bất kỳ số tự nhiên nào. Các nhà triết học đã suy đoán về bản chất của vô hạn, ví dụ Zeno xứ Elea, người đã đề xuất nhiều nghịch lý liên quan đến vô cực, và Eudoxus của Cnidus, người đã sử dụng ý tưởng về số lượng nhỏ vô hạn trong phương pháp cạn kiệt của mình. Ý tưởng này cũng là cơ sở của vi tích phân.
Vào cuối thế kỷ 19, Georg Cantor đã giới thiệu và nghiên cứu các tập hợpvô hạn và số lượng vô hạn, hiện là một phần thiết yếu của nền tảng của toán học.[1] Ví dụ, trong toán học hiện đại, một dòng thường được coi là các thiết lập của tất cả các điểm của nó, và số lượng vô hạn của chúng (các lực lượng của dòng) lớn hơn số lượng các số nguyên.[2] Do đó, khái niệm toán học về vô cực tinh chỉnh và mở rộng khái niệm triết học cũ. Nó được sử dụng ở mọi nơi trong toán học, ngay cả trong các lĩnh vực như tổ hợp và lý thuyết số dường như không liên quan gì đến nó. Ví dụ, cách chứng minh của Định lý cuối cùng của Fermat sử dụng sự tồn tại của các tập hợp vô hạn rất lớn.
Khái niệm vô hạn cũng được sử dụng trong vật lý và các ngành khoa học khác.
Các nền văn hóa cổ đại có nhiều ý tưởng khác nhau về bản chất của vô cực. Người Ấn Độ và Hy Lạpcổ đại không định nghĩa sự vô hạn trong chủ nghĩa hình thức chính xác như toán học hiện đại, và thay vào đó tiếp cận vô cực như một khái niệm triết học.
Theo quan điểm truyền thống của Aristotle, người Hy Lạp thời Hellenic nói chung thường thích phân biệt vô cực tiềm năng với vô cực thực tế; ví dụ, thay vì nói rằng có vô số các số nguyên tố, Euclid thay vào đó thích nói rằng: có nhiều số nguyên tố hơn trong bất kỳ tập hợp các số nguyên tố nhất định nào.[7]
Cuốn sách Jain về toán học Surya Prajnapti (thế kỷ thứ 4 đến thứ 3 TCN) phân loại tất cả các số thành ba tập hợp: đếm được, vô số, và vô hạn. Mỗi trong số này được chia thành ba loại:[8]
Vô số: thấp nhất, trung bình và cao nhất
Không đếm được: gần như không đếm được, thực sự không đếm được, và vô số không đếm được
Vô hạn: gần như vô hạn, thực sự vô hạn, vô hạn vô hạn
Trong tác phẩm này, hai loại số vô hạn cơ bản được phân biệt. Trên cả cơ sở vật chất và bản thể học, một sự khác biệt đã được tạo ra giữa asaṃkhyāta ("vô số, không đếm được") và ananta ("vô tận, không giới hạn"), giữa loại vô số bị giới hạn cứng nhắc và loại vô số giới hạn lỏng lẻo.[9]
Các nhà toán học châu Âu bắt đầu sử dụng các số và biểu thức vô hạn theo kiểu có hệ thống trong thế kỷ 17. Năm 1655, John Wallis lần đầu tiên sử dụng ký hiệu cho một số như vậy trong De partibus conicis của mình và khai thác nó trong các tính toán diện tích bằng cách chia vùng thành các dải có chiều rộng vô hạn theo thứ tự [10] Nhưng trong Arithmetica infinitorum (1655), ông chỉ ra chuỗi vô hạn, các sản phẩm vô hạn và các phân số tiếp tục vô hạn bằng cách viết ra một vài thuật ngữ hoặc yếu tố và sau đó nối thêm "& c." Ví dụ: "1, 6, 12, 18, 24, & c." [11]
Năm 1699, Isaac Newton đã viết về các phương trình với thuật ngữ vô hạn trong tác phẩm De analysi per aequationes numero terminorum infinitas.[12]
Biểu tượng vô cực là một biểu tượng toán học đại diện cho khái niệm vô cực. Biểu tượng được mã hóa bằng Unicode tại U+221E∞infinity (HTML ∞·∞) và trong LaTeX như \infty.
Nó được giới thiệu vào năm 1655 bởi John Wallis,[14][15] và, kể từ khi được giới thiệu, nó cũng đã được sử dụng bên ngoài toán học trong chủ nghĩa thần bí hiện đại [16] và ký hiệu văn học.[17]
Leibniz, một trong những người đồng phát minh ra phép tính vi tích phân, đã suy đoán rộng rãi về số lượng vô hạn và việc sử dụng chúng trong toán học. Đối với Leibniz, cả số lượng vô hạn và số lượng vô hạn đều là những thực thể lý tưởng, không có cùng bản chất với số lượng đáng kể, nhưng được hưởng các tính chất tương tự theo Luật liên tục.[18][19]
Trong giải tích thực, biểu tượng , được gọi là "vô cực", được sử dụng để biểu thị một giới hạn không giới hạn.[20] Ký hiệu có nghĩa là x tăng không giới hạn và có nghĩa là x giảm không giới hạn. Nếu f (t) ≥ 0 cho mọi t, thì [21]
có nghĩa là f(t) không bị giới hạn trong khoảng nào từ tới
nghĩa là tổng diện tích f(t) là vô hạn trong miền giới hạn.
nghĩa là tổng diện tích của f(t) trong miền giới hạn là hữu hạn, và bằng
^These uses of infinity for integrals and series can be found in any standard calculus text, such as, Swokowski 1983Lỗi harv: không có mục tiêu: CITEREFSwokowski1983 (trợ giúp)
Infinite ReflectionsLưu trữ 2009-11-05 tại Wayback Machine, by Peter Suber. How Cantor's mathematics of the infinite solves a handful of ancient philosophical problems of the infinite. From the St. John's Review, XLIV, 2 (1998) 1–59.