Chuỗi lũy thừa hình thức

Trong toán học, một chuỗi lũy thừa hình thức là một sự khái quát của đa thức, trong đó số các số hạng có thể là vô hạn mà không có yêu cầu nào về sự hội tụ.

Vành các chuỗi lũy thừa hình thức

[sửa | sửa mã nguồn]

Vành các chuỗi lũy thừa hình thức một biến X với hệ số trong vành giao hoán R được ký hiệu là .

Cấu trúc vành

[sửa | sửa mã nguồn]

Một phần tử của có thể được coi như một phần tử của . Ta định nghĩa phép cộng

và phép nhân

Phép nhân này khác với phép nhân từng số hạng. Nó được gọi là tích Cauchy của hai chuỗi hệ số, và là một loại tích chập rời rạc. Với các phép toán này, trở thành một vành giao hoán với phần tử không và đơn vị .

Cấu trúc tô pô

[sửa | sửa mã nguồn]

Theo qui ước

một cấu trúc tô-pô trên vành các chuỗi lũy thừa hình thức được xác định bởi một cấu trúc tô-pô trên . Có nhiều định nghĩa tương đương.

  • Chúng ta có thể gán cho tô pô tích, với mỗi bản sao của mang tô pô rời rạc.
  • Ta cũng có thể gán cho nó tô-pô cảm sinh từ metric sau. Khoảng cách hai chuỗi phân biệt được định nghĩa là
với số tự nhiên nhỏ nhất sao cho .

Lưu ý rằng trong giới hạn

không tồn tại, vì vậy, nó không hội tụ tới

Các phép toán khác

[sửa | sửa mã nguồn]

Lũy thừa

[sửa | sửa mã nguồn]

Với một số tự nhiên n ta có

trong đó

Nghịch đảo

[sửa | sửa mã nguồn]

Chuỗi

là khả nghịch trong hệ số hằng là khả nghịch. Chuỗi nghịch đảo có thể được tính qua công thức đệ quy tường minh

Một trường hợp đặc biệt là công thức chuỗi cấp số nhân được thỏa mãn trong :

Cho hai chuỗi lũy thừa hình thức

ta có thể định nghĩa phép hợp

với

Tổng này được lấy trên tất cả các cặp (k,j) với sao cho

Đạo hàm hình thức

[sửa | sửa mã nguồn]

Cho một chuỗi lũy thừa hình thức

ta có thể xác định đạo hàm hình thức của nó, ký hiệu là Df hoặc f' , bởi

Tính chất

[sửa | sửa mã nguồn]

Tính chất đại số của vành các chuỗi lũy thừa hình thức

[sửa | sửa mã nguồn]

Tính chất tô pô

[sửa | sửa mã nguồn]

Không gian metric là hoàn chỉnh

Vành compact khi và chỉ khi Rhữu hạn.

Tham khảo

[sửa | sửa mã nguồn]
  • Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications. 137. Cambridge: Cambridge University Press. ISBN 978-0-521-19022-0. Zbl 1250.68007.
  • Nicolas Bourbaki: Đại số, IV, §4. Springer-Verlag 1988.

Đọc thêm

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Download Atri - Những hồi ức thân thương của tôi Việt hóa
Download Atri - Những hồi ức thân thương của tôi Việt hóa
Ở một tương lai xa xăm, sự dâng lên đột ngột và không thể lí giải của mực nước biển đã nhấn chìm hầu hết nền văn minh của nhân loại xuống đáy biển sâu thẳm
Bà chúa Stalk - mối quan hệ giữa Sacchan và Gintoki trong Gintama
Bà chúa Stalk - mối quan hệ giữa Sacchan và Gintoki trong Gintama
Gin chỉ không thích hành động đeo bám thôi, chứ đâu phải là anh Gin không thích Sacchan
Tóm tắt chương 229: Quyết chiến tại tử địa Shunjuku - Jujutsu Kaisen
Tóm tắt chương 229: Quyết chiến tại tử địa Shunjuku - Jujutsu Kaisen
Vì Sukuna đã bành trướng lãnh địa ngay lập tức, Angel suy luận rằng ngay cả Sukuna cũng có thể tái tạo thuật thức bằng phản chuyển
[Chap 1] Cậu của ngày hôm nay cũng là tất cả đáng yêu
[Chap 1] Cậu của ngày hôm nay cũng là tất cả đáng yêu
Truyện ngắn “Cậu của ngày hôm nay cũng là tất cả đáng yêu” (Phần 1)