Về mặt lịch sử, từ "giải được" có nguồn gốc từ lý thuyết Galois và chứng minh của tính-không-giải-được-bằng-căn-thức của các đa thức bậc năm. Cụ thể hơn, một đa thức là giải được bằng căn thức khi và chỉ khi nhóm Galois của nó là một nhóm giải được[1] (lưu ý rằng định lý này chỉ đúng với đặc số 0). Tức là tương ứng với một đa thức , ta có một dãy các mở rộng trường
Renner thì đã quá nổi tiếng với sự vô nhân tính cùng khả năng diễn xuất tuyệt đỉnh và là kẻ đã trực tiếp tuồng thông tin cũng như giúp Demiurge và Albedo