Tổng trực tiếp của nhóm

Trong toán học, nhóm G được gọi là tổng trực tiếp[1][2][3] của hai nhóm con chuẩn tắc với giao tầm thường nếu nó được sinh bởi hai nhóm con đó. Trong Đại số trừu tượng, phương pháp xây dựng nhóm này có thể tổng quát hóa sang tổng trực tiếp của không gian vectơ, mô đun, và các cấu trúc khác. Một nhóm có thể biểu diễn thành tổng trực tiếp của các nhóm con không tầm thường được gọi là phân tích được.

Định nghĩa

[sửa | sửa mã nguồn]

Một nhóm G được gọi là tổng trực tiếp của hai nhóm con H1H2 nếu

  • Mỗi H1H2 là nhóm con chuẩn tắc của G,
  • Giao của hai nhóm con H1H2 là nhóm tầm thường (có duy nhất phần tử đơn vị của G),
  • G = <H1, H2>, G được sinh bởi hai nhóm H1H2.

Tổng quát hơn, G gọi là tổng trực tiếp của tập chứa hữu hạn các nhóm con {Hi} nếu

  • Mỗi Hi là nhóm con chuẩn tắc của G,
  • Mỗi Hi có giao tầm thường với nhóm con <{Hj: j ≠ i>,
  • G = <{Hi}>, G được sinh bởi các nhóm con {Hi}'.

Nếu G là tổng trực tiếp của 2 nhóm con HK thì ta viết G = H + K và nếu G là tổng trực tiếp của tập nhóm con {Hi} thì ta thường viết G = ∑Hi. Thường thì tổng trực tiếp đẳng cấu với tích trực tiếp yếu của các nhóm con.

Tính chất

[sửa | sửa mã nguồn]

Nếu G = H + K, thì ta có thể chứng minh được

  • Với mọi h thuộc H, k thuộc K, ta có h * k = k * h,
  • Với mọi g thuộc G, tồn tại duy nhất h thuộc H, k thuộc K sao cho g = h * k,
  • Có khử tổng trong nhóm thương, nghĩa là (H+K)/K đẳng cấu với H.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Homology. Saunders MacLane. Springer, Berlin; Academic Press, New York, 1963.
  2. ^ László Fuchs. Infinite Abelian Groups
  3. ^ Nguyễn Tiến Quang (2008), tr. 89
Chúng tôi bán
Bài viết liên quan
Tất tần tật về nghề Telesales
Tất tần tật về nghề Telesales
Telesales là cụm từ viết tắt của Telephone là Điện thoại và Sale là bán hàng
Nhiệm vụ ẩn – Khúc bi ca của Hyperion
Nhiệm vụ ẩn – Khúc bi ca của Hyperion
Là mảnh ghép cuối cùng của lịch sử của Enkanomiya-Watatsumi từ xa xưa cho đến khi Xà thần bị Raiden Ei chém chết
Lịch sử và sự kiện đáng nhớ của Fontaine
Lịch sử và sự kiện đáng nhớ của Fontaine
Trước tiên nói về ảo thuật gia vĩ đại "Parsifal", đây là danh xưng gọi hai chị em ảo thuật gia, xuất thân từ Fleuve Cendre
Stranger Things season 4 - Sự chờ đợi liệu có xứng đáng
Stranger Things season 4 - Sự chờ đợi liệu có xứng đáng
Một lần nữa thì Stranger Things lại giữ được cái chất đặc trưng vốn có khác của mình đó chính là show rất biết cách sử dụng nhạc của thập niên 80s để thúc đẩy mạch truyện và góp phần vào cách mà mỗi tập phim khắc họa cảm xúc