Tổng trực tiếp của nhóm

Trong toán học, nhóm G được gọi là tổng trực tiếp[1][2][3] của hai nhóm con chuẩn tắc với giao tầm thường nếu nó được sinh bởi hai nhóm con đó. Trong Đại số trừu tượng, phương pháp xây dựng nhóm này có thể tổng quát hóa sang tổng trực tiếp của không gian vectơ, mô đun, và các cấu trúc khác. Một nhóm có thể biểu diễn thành tổng trực tiếp của các nhóm con không tầm thường được gọi là phân tích được.

Định nghĩa

[sửa | sửa mã nguồn]

Một nhóm G được gọi là tổng trực tiếp của hai nhóm con H1H2 nếu

  • Mỗi H1H2 là nhóm con chuẩn tắc của G,
  • Giao của hai nhóm con H1H2 là nhóm tầm thường (có duy nhất phần tử đơn vị của G),
  • G = <H1, H2>, G được sinh bởi hai nhóm H1H2.

Tổng quát hơn, G gọi là tổng trực tiếp của tập chứa hữu hạn các nhóm con {Hi} nếu

  • Mỗi Hi là nhóm con chuẩn tắc của G,
  • Mỗi Hi có giao tầm thường với nhóm con <{Hj: j ≠ i>,
  • G = <{Hi}>, G được sinh bởi các nhóm con {Hi}'.

Nếu G là tổng trực tiếp của 2 nhóm con HK thì ta viết G = H + K và nếu G là tổng trực tiếp của tập nhóm con {Hi} thì ta thường viết G = ∑Hi. Thường thì tổng trực tiếp đẳng cấu với tích trực tiếp yếu của các nhóm con.

Tính chất

[sửa | sửa mã nguồn]

Nếu G = H + K, thì ta có thể chứng minh được

  • Với mọi h thuộc H, k thuộc K, ta có h * k = k * h,
  • Với mọi g thuộc G, tồn tại duy nhất h thuộc H, k thuộc K sao cho g = h * k,
  • Có khử tổng trong nhóm thương, nghĩa là (H+K)/K đẳng cấu với H.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Homology. Saunders MacLane. Springer, Berlin; Academic Press, New York, 1963.
  2. ^ László Fuchs. Infinite Abelian Groups
  3. ^ Nguyễn Tiến Quang (2008), tr. 89
Chúng tôi bán
Bài viết liên quan
Takamine: Samurai huyền thoại và hai món vũ khí lôi thần ban tặng
Takamine: Samurai huyền thoại và hai món vũ khí lôi thần ban tặng
Cánh cổng Arataki, Kế thừa Iwakura, mãng xà Kitain, Vết cắt sương mù Takamine
[Chap 2] Cậu của ngày hôm nay cũng là tất cả đáng yêu
[Chap 2] Cậu của ngày hôm nay cũng là tất cả đáng yêu
Truyện ngắn “Cậu của ngày hôm nay cũng là tất cả đáng yêu” (phần 2)
Nhân vật Beta - The Eminence in Shadow
Nhân vật Beta - The Eminence in Shadow
Cô ấy được biết đến với cái tên Natsume Kafka, tác giả của nhiều tác phẩm văn học "nguyên bản" thực sự là phương tiện truyền thông từ Trái đất do Shadow kể cho cô ấy.
Review sách
Review sách "Thiên thần và ác quỷ"- Dan Brown: khi ác quỷ cũng nằm trong thiên thần!
Trước hết là đọc sách của Dan dễ bị thu hút bởi lối dẫn dắt khiến người đọc vô cùng tò mò mà không dứt ra được