Đồng luân

Hình 3: Một biến đổi đồng luân tách cà phê thành xuyến.
Hình 4: Hai đường đậm là đồng luân theo các điểm cuối của chúng. Các hình ảnh động mô tả một phép biến đổi đồng luân.
Hình 5: Hai đường đậm là đồng luân theo các điểm cuối của chúng. Các đường nhỏ mô tả một phép biến đổi đồng luân.
Hình 6: Quá trình biến đổi đồng luân.
Hình 7: Homotopy group addition

Trong tô pô, hai ánh xạ liên tục từ không gian tôpô này vào không gian tô pô khác được gọi là đồng luân với nhau (tiếng Hy Lạp ὁμός-homos-đồng nhất và τόπος-topos-vị trí) nếu ánh xạ này có thể biến đổi liên tục thành ánh xạ kia, một phép biến đổi như vậy gọi là một phép biến đổi đồng luân giữa hai ánh xạ. Ngoài ra đồng luân còn nói đến nhóm đồng luânnhóm đối đồng luân, các bất biến quan trọng trong tô pô đại số.

Định nghĩa

[sửa | sửa mã nguồn]
  • Một biến đổi đồng luân giữa hai ánh xạ liên tục từ không gian tô pô vào không gian tô pô được định nghĩa là ánh xạ liên tục từ tích của không gian với đoạn đơn vị vào sao cho với mọi điểm ta có .
  • Nếu ta nghĩ tham số thứ hai của như là thời gian, khi đó mô tả một biến đổi liên tục ánh xạ thành ký hiệu . Tại thời điểm ta có ánh xạ , tại thời điểm ta có ánh xạ . Chúng ta cũng có thể nghĩ đến tham số thứ hai như điều khiển một thanh trượt cho quá trình chuyển đổi từ để như di chuyển thanh trượt đến , và ngược lại.
  • Một ký hiệu thay thế khác cho ký hiệu một phép đồng luân giữa hai hàm số liên tục là một họ của các hàm số liên tục cho sao cho và mỗi bản đồ liên tục từ đến . Hai cách viết này trùng nhau bằng cách thiết lập
  • Ví dụ về phép biến đổi đồng luân của cốc cà phê thành hình xuyến (sử dụng phần mềm Sketchup file: Ly cà phê[liên kết hỏng]).
Hình 1: Quá trình biến đổi cốc cà phê thành hình xuyến qua phép biến đổi đồng luân.
Hình 2: Góc nhìn khác của quá trình biến đổi đồng luân.

Tính chất

[sửa | sửa mã nguồn]

Ánh xạ hợp

[sửa | sửa mã nguồn]

Hàm số liên tục được gọi là đồng luân khi và chỉ khi có một đồng luân từ đến như mô tả ở trên. Mối quan hệ đồng luân này tương thích với ánh xạ thành phần theo nghĩa sau đây: Nếu là đồng luân, và là đồng luân, thì ánh xạ hợp của chúng cũng đồng luân do tính chất ánh xạ hợp của hai hàm số liên tục thì liên tục.

Nhóm đồng luân

[sửa | sửa mã nguồn]

Quan hệ đồng luân giữa hai ánh xạ là một quan hệ tương đương, do đó ta có thể xét tập hợp các lớp tương đương, ký hiệu là . Cố định ảnh của biên , tập hợp này tạo thành một nhóm . Các nhóm này được gọi là các nhóm đồng luân. Khi , ta thu được nhóm cơ bản.

Đồng luân đường

[sửa | sửa mã nguồn]
  • Nhắc lại về đường đi trong không gian là ánh xạ liên tục từ khoảng trong tô pô Euclid vào . Điểm được gọi là điểm đầu và điểm được gọi là điểm kết thúc.[1]
  • Đặt là hai đường từ sang trong . Một phép đồng luân từ là họ các ánh xạ: , như vậy ánh xạ là liên tục, , và với mọi điểm đường đi từ .[1]
  • Nếu có một phép đồng luân từ chúng ta nói rằng đồng luân với , thường ký hiệu là ~ .[1]
  • Một vòng hay một đường đi đóng tại là một đường mà điểm đầu và điểm cuối của nó là . Nói cách khác, nó là một ánh xạ liên tục sao cho . Vòng bất biến là vòng mà = với mọi .[1]
  • Một không gian được gọi là đơn liên nếu nó liên thông đường và bất kì vòng nào đều đồng phôi với một vòng bất biến.[1]
  • Ví Dụ:

Trong không gian định chuẩn hai đường cùng điểm đầu và cùng điểm cuối là đồng luân. Ta có thể chọn đồng luân .

Mệnh đề

[sửa | sửa mã nguồn]
  1. Quan hệ đồng luân trên các tập của tất cả các đường từ sang là mối quan hệ tương đương.[1]
  2. 2. Nếu không gian có sự biến dạng co rút lại thành không gian con thì là đồng luân với .[1]
  3. 3. Nếu ~ ~ thì ~ . Thì chúng ta có thể định nghĩa .[1]
  4. 4. Nếu là đường từ sang thì là đồng luân chứa vòng tại .[1]
  5. 5. Đặt là đường từ sang là nhóm cơ bản của tại thì ánh xạ:
là đồng phôi.[1]

Đồng luân tương đương

[sửa | sửa mã nguồn]
  • Cho hai không gian chúng ta nói rằng chúng tương đương đồng luân, hoặc của cùng một dạng đồng luân, nếu có tồn tại ánh xạ liên tục sao cho đồng luân với ánh xạ đồng nhất của đồng luân với ánh xạ đồng nhất của . Các ánh xạ được gọi là tương đương đồng luân trong trường hợp này. Mỗi đồng phôi là một tương đương đồng luân, nhưng điều ngược lại là không đúng. Ví dụ, tương đương đồng luân với không gian đơn điểm: ta có thể chọn là hàm hằng và là hàm gửi đơn điểm đến gốc tọa độ. . Một đồng luân giữa được cho bởi với . Tuy nhiên, không đồng phôi với không gian đơn điểm. (chúng thậm chí còn không có cùng lực lượng.)
  • Ví dụ: Một đĩa rắn không phải là đồng phôi với một điểm duy nhất (vì không có song ánh giữa chúng), mặc dù các ổ đĩa và các điểm tương đương đồng luân (kể từ khi bạn có thể biến dạng đĩa dọc theo các đường xuyên tâm liên tục vào một điểm duy nhất).
  • Trực giác mà nói, hai không gian tương đương đồng luân nếu chúng có thể được chuyển đổi thành nhau bằng cách uốn cong, thu hẹp hay mở rộng. Ví dụ, một đĩa cứng hoặc một quả bóng rắn là tương đương đồng luân đến một điểm, và là tương đương đồng luân với vòng tròn đơn vị . Một không gian tương đương đồng luân với một điểm được gọi là một không gian co rút.

Biến thể

[sửa | sửa mã nguồn]

Đồng vị

[sửa | sửa mã nguồn]

Một phép đồng vị, là một phép đồng luân H sao cho với mọi t, H(x,t) là một phép nhúng.[2]

Nút tầm thường không tương đương với nút ba lá. Chúng không đồng vị với nhau.

Ví dụ, hai ánh xạ gửi [−1,1] vào đường thẳng thực f(x) = −xg(x) = x không đồng vị với nhau. Tuy nhiên chúng đồng luân với nhau.

Các phép đồng vị là cấu xạ trong phạm trù các nút thắt.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ a b c d e f g h i j - [TS. Huỳnh Quang Vũ| [1] Lưu trữ 2014-02-03 tại Wayback Machine| Giáo trình Tô Pô | | 2012-2013| Chương 15 - Trang 73 ]
  2. ^ Weisstein, Eric W., "Isotopy" từ MathWorld.
Chúng tôi bán
Bài viết liên quan
Đấu thần vương Shion trong Tensei Shitara Slime Datta Ken
Đấu thần vương Shion trong Tensei Shitara Slime Datta Ken
Shion (紫苑シオン, lit. "Aster tataricus"?) là Thư ký thứ nhất của Rimuru Tempest và là giám đốc điều hành trong ban quản lý cấp cao của Liên đoàn Jura Tempest
SPAC là gì và vì sao Vinfast lựa chọn SPAC để niêm yết trên sàn chứng khoán Nasdaq?
SPAC là gì và vì sao Vinfast lựa chọn SPAC để niêm yết trên sàn chứng khoán Nasdaq?
Trong niềm tự hào vì 1 công ty Việt Nam có thể niêm yết trên 1 trong những sàn giao dịch chứng khoán nổi tiếng nhất thế giới là Nasdaq của Mỹ
Nhân vật Paimon trong Genshin Impact
Nhân vật Paimon trong Genshin Impact
Paimon là một pé đồng hành siêu dễ thương cùng main chính tham gia phiêu lưu trong thế giới Genshin Impart
Cung mệnh và chòm sao của Kaveh - Genshin Impact
Cung mệnh và chòm sao của Kaveh - Genshin Impact
Hiện tại thì cả tên cung mệnh lẫn tên banner của Kaveh đều có liên quan đến thiên đường/bầu trời, tên banner lão là 天穹の鏡 (Thiên Khung chi Kính), bản Việt là Lăng kính vòm trời, bản Anh là Empryean Reflection (Heavenly reflection