Bài này không có nguồn tham khảo nào. |
Men gốm là một lớp thủy tinh có chiều dày từ 0,15–0,4 mm phủ lên bề mặt xương gốm. Lớp thủy tinh này hình thành trong quá trình nung và có tác dụng làm cho bề mặt sản phẩm trở nên sít đặc, nhẵn, bóng.
Men gốm tuy bản chất là thủy tinh nhưng phối liệu không hoàn toàn giống, bởi thủy tinh thông thường khi nấu có thể chứa trong bể khuấy cho đồng nhất và khử bọt. Men khi nóng chảy phải đồng nhất mà không cần một sự trợ giúp cơ học nào, nên phối liệu phải không có vật chất nào không thể tạo pha thủy tinh. Do đó, điều cần thiết đầu tiên là phải tạo được một hỗn hợp chảy lỏng đồng nhất ở nhiệt độ mong muốn.
Trong quá trình nóng chảy và ngay sau đó, các oxide trong men phản ứng với bề mặt xương gốm để tạo nên một lớp trung gian. Phản ứng này rất quan trọng vì nó ảnh hưởng đến độ bền cơ học của men, nó không chỉ phụ thuộc thành phần hóa học chung của men mà còn phụ thuộc từng oxide riêng. Do đó, điều cần thiết thứ hai là thành phần hóa của men phải gần giống thành phần hóa của xương gốm.
Quá trình làm nguội (giảm nhiệt) xảy ra ngược với quá trình nung (tăng nhiệt). Nếu hệ số giãn nở nhiệt của men và xương không phù hợp nhau sẽ gây ra bong hoặc nứt men. Do đó, điều cần thiết thứ ba là hệ số giãn nở nhiệt của men và xương phải phù hợp nhau.
Men nung xong phải cứng, nhẵn, bóng (ngoại trừ men mat). Bên cạnh đó, tính trong suốt, không màu, tính sáng bóng của men không phải lúc nào cũng như mong muốn. Nếu xương gốm có màu thì phải dùng men đục để che lấp màu của xương, ngoài ra có thể chế tạo men mat (bề mặt như sáp), men kết tinh và vô số men màu khác. Do đó, điều cần thiết thứ tư là thành phần hóa của men phải được điều chỉnh sao cho men có được các tính chất cơ-lý-hoá-quang mong muốn.
Trong công nghiệp thủy tinh thường dùng thành phần % các cấu tử để so sánh, nhưng trong công nghiệp gốm sứ, người ta hay dùng tỷ lệ phân tử và tất nhiên có thể chuyển đổi qua lại giữa hai công thức này. Seger đã đưa ra cách sắp xếp các oxide có trong thành phần men thành 3 nhóm chính: oxide base, oxide acid và oxide lưỡng tính. Các nhóm này được sắp xếp theo trình tự sau và tập hợp này được gọi là công thức Seger của men:
1.RO | x. Al2O3 | y. SiO2 |
z. B2O3 |
R là biểu hiện cho các kim loại sau: Pb, K, Na, Ca, Mg, Ba, Li, Zn. Đối với men màu có thể là Co, Ni, Cu, Mn, Fe.
Oxide lưỡng tính nằm xen kẽ giữa oxide base và oxide acid, nhóm này chủ yếu là Al2O3. Oxide acid bao gồm SiO2 là chính, ngoài ra có thể có thêm B2O3.
Các mol thành phần của oxide acid và oxide lưỡng tính được tính quy đổi theo chuẩn của oxide base. Tổng các mol thành phần của các oxide base luôn quy về bằng 1.
Men gốm là một hệ phức tạp gồm nhiều oxide như Li2O, Na2O, K2O, PbO, B2O3, CaO, ZnO, MgO, Al2O3, Fe2O3, SiO2... được đưa vào dưới các dạng sau:
Phương pháp này có thể áp dụng cho hầu hết các loại men sống và xuất phát từ rất lâu. Phương pháp này đơn giản chỉ là nghiền phối liệu trong máy nghiền bi gián đoạn đến khi độ mịn qua hết sàng 10.000 lỗ/cm2 (hoặc còn lại dưới 0,5%). Trong quá trình nghiền, cần khống chế độ mịn thích hợp vì nếu như nghiền quá mịn men sẽ bị cuốn hoặc bong men, nếu men quá thô sẽ gây nhám bề mặt và tăng nhiệt độ nung một cách đáng kể. Đối với men trắng (đục) và men trong hoặc men cho sứ cách điện, sau khi nghiền cần thiết phải đưa qua máy khử từ để loại bỏ sắt và sắt oxit (có trong nguyên liệu hoặc do sự mài mòn của máy nghiền). Thông thường men dễ bị lắng làm cho các cấu tử trong men phân bố không đều và gây lỗi sản phẩm, để hạn chế phải dùng các biện pháp như:
Phương pháp frit có thể khắc phục được tất cả những nhược điểm của phương pháp cổ truyền, mà quan trong nhất là khắc phục (giảm thiểu) được yếu tố độc hại của những nguyên liệu đưa vào men (như PbO có thể gây ung thư), đồng thời giải quyết bài toán thay thế nguyên liệu khi nguyên liệu khai thác không ổn định về chất lượng và một số nguyên liệu đang có nguy cơ cạn kiệt. Phương pháp này cho phép công nghệ sản xuất men gốm có thể đa dạng hoá trong việc sử dụng nguyên liệu để cho ra những sản phẩm tinh xảo, hạn chế rủi ro trong sản xuất và, hơn thế nữa, có thể cho ra đời những sản phẩm công nghiệp đáp ứng nhu cầu ngày càng cao của thế giới. Phương pháp này bao gồm 2 công đoạn chính:
Men phải chảy lỏng hoàn toàn ở nhiệt độ mong muốn. Kreidl và Weyl đã rút ra những nguyên lý về sự thay đổi dựa trên cấu trúc để men dễ chảy hơn bao gồm 4 yếu tố, trong sản xuất thường những yếu tố này để điều chỉnh sự chảy lỏng của men:
Kiến thức về hỗn hợp eutecti của hỗn hợp chứa oxide nhôm là rất quan trọng vì oxide nhôm được xem như là một cấu tử chính của men, thế nhưng oxide nhôm lại là một chất chịu lửa. Khi thêm oxide nhôm vào men, ban đầu nhiệt độ nóng chảy giảm xuống cho đến điểm eutecti nhưng sau đó lại tăng lên, vì thế cần cho thành phần oxide nhôm sao cho hỗn hợp gần điểm eutecti nhất.
Kiến thức về nhiệt độ nóng chảy thấp nhất của một hệ (điểm eutecti) không chỉ hữu dụng trong việc sản xuất men nhiệt độ thấp mà còn hữu dụng trong việc tìm ra một men không bị hoá mềm trong khoảng nhiệt độ mà sản phẩm sẽ được sử dụng.
Nhiệt độ nóng chảy của men phụ thuộc thành phần phối liệu và các oxide có mặt trong men. Nhiệt độ nóng chảy của men sẽ thay đổi nếu như có một yếu tố thay đổi, nhưng một số yếu tố sau sẽ dẫn đến sự thay đổi lớn, đó là:
Để xác định khoảng nhiệt độ nóng chảy của men, có thể dùng công thức tính gần đúng hoặc dùng phương pháp thực nghiệm:
Trong đó:
Hằng số nóng chảy của oxide hoặc hợp chất dễ nóng chảy:
Tên | Trị số | Tên | Trị số | Tên | Trị số |
---|---|---|---|---|---|
NaF | 1,30 | B2O3 | 1,25 | Na2O | 1,00 |
CuO | 0,80 | Na2SbO3 | 0,65 | MgO | 0,60 |
K2O | 1,00 | CaF2 | 1,00 | ZnO | 1,00 |
BaO | 1,00 | PbO | 0,80 | AlF3 | 0,80 |
Na2SiF6 | 0,80 | FeO | 0,80 | Fe2O3 | 0,80 |
CoO | 0,80 | NiO | 0,80 | Mn2O3 | 0,80 |
Sb2O5 | 0,60 | Cr2O3 | 0,60 | CaO | 0,50 |
Al2O3 <3% | 0,50 |
Hằng số nóng chảy của oxide hoặc hợp chất khó nóng chảy:
Tên | Trị số | Tên | Trị số | Tên | Trị số |
---|---|---|---|---|---|
Al2O3 >3% | 1,20 | SiO2 | 2,00 | P2O5 | 1,90 |
SnO2 | 1,67 |
Bảng tra cứu nhiệt độ nóng chảy (°C) của men theo hệ số K:
K | T (°C) | K | T (°C) | K | T (°C) | K | T (°C) |
---|---|---|---|---|---|---|---|
>1,9 | 750 | 1,5 | 756 | 1,0 | 778 | 0,5 | 1.025 |
1,9 | 751 | 1,4 | 758 | 0,9 | 800 | 0,4 | 1.100 |
1,8 | 753 | 1,3 | 759 | 0,8 | 829 | 0,3 | 1.200 |
1,7 | 754 | 1,2 | 763 | 0,7 | 861 | 0,2 | 1.300 |
1,6 | 755 | 1,1 | 771 | 0,6 | 905 | 0,1 | 1.450 |
Men gốm không có điểm nóng chảy xác định mà chỉ có sự thay đổi từ trạng thái dẻo quánh sang trạng thái chảy lỏng. Do vậy độ nhớt cũng sẽ thay đổi theo nhiệt độ, nhiệt độ tăng thì độ nhớt giảm và ngược lại. Độ nhớt của men là một tính chất quan trọng chủ yếu quyết định sự thành công của nhiều giai đoạn được thực hiện ở các nhiệt độ khác nhau.
Giá trị của nó ở nhiệt độ nóng chảy chỉ rõ men nào có khả năng chảy tràn khỏi bề mặt sản phẩm khi nung và men nào thì không. Độ nhớt trong quá trình hình thành men cũng cho biết sự thoát khí xảy ra (do các phản ứng hoá học) có dễ dàng hay không trong quá trình nung. Qua thực nghiệm, có thể rút ra kết luận rằng: các oxide sau làm tăng độ nhớt của men: SiO2, Al2O3, ZrO2, Cr2O3, SnO2, MgO, CaO. B2O3 đưa vào dưới 12% sẽ làm tăng độ nhớt, nhưng nếu lớn hơn sẽ làm giảm độ nhớt. SrO đưa vào men với hàm lượng nhỏ có tác dụng làm giảm độ nhớt nhưng nếu trên 20% sẽ làm tăng độ nhớt.
Sức căng bề mặt là ứng suất căng tác dụng lên bề mặt lỏng theo chiều hướng thu nhỏ diện tích bề mặt lỏng nếu chất lỏng nằm tự do trong không khí. Morey cho biết đối với các pha silicat nóng chảy, sức căng bề mặt nằm trong khoảng 300 dyn/cm nhưng nó sẽ dao động trong khoảng 150-500 dyn/cm. Sức căng bề mặt thường có khuynh hướng thu nhỏ ranh giới tiếp xúc của pha lỏng. Tại ranh giới giữa pha rắn-lỏng-khí sẽ hình thành sức căng bề mặt, điều này đóng vai trò quan trọng trong quá trình thấm ướt. Một số men khi chảy lỏng có khuynh hướng tự co lại thành hình cầu, do đó, nếu muốn tráng 2 men chồng lên nhau, và muốn có ranh giới tiếp xúc sắc nét thì 2 men phải có sức căng bề mặt bằng nhau, nếu không, men có sức căng lớn hơn sẽ co lại và men có sức căng nhỏ hơn sẽ kéo giãn ra.
Một men có sức căng bề mặt lớn thường gây ra khuyết tật cho sản phẩm như phồng men, rộp men, cuộn men...Trong thực tế, có thể điều chỉnh sức căng bề mặt mà không cần thay đổi thành phần hoá bằng cách thay đổi nhiệt độ nung nhưng để làm điều này điều này nhất thiết phải điều chỉnh phối liệu xương. Để xác định sức căng bề mặt men có thể dùng công thức cộng tính hoặc có thể dùng những phương pháp tương tự thủy tinh:
|
|
|
|
|
|
|
Công thức tính sức căng bề mặt có dạng:
Trong đó:
Trong công nghiệp gốm sứ, sự giãn nở nhiệt được biểu diễn theo hệ số giãn nở nhiệt toàn phần và tính bằng % từ 20 °C đến nhiệt độ tới hạn (thông thường khoảng 500-550 °C). Sự chênh lệch hệ số giãn nở của men và mộc trong phạm vi hẹp không gây khuyết tật vì men có khả năng đàn hồi trong một phạm vi nhất định. Trong các trường hợp thì độ bền cơ học của sản phẩm tăng nếu men ở trạng thái bị nén do đó cần sử dụng men có hệ số giãn nở nhỏ hơn hệ số giãn nở của xương gốm một ít. Tuy nhiên, nếu chênh lệch quá nhiều, ứng lực sinh ra lớn hơn độ bền thì sẽ có hiện tượng nứt hoặc bong men.
Hệ số giãn nở nhiệt của men được xác định bằng đilatômét hoặc tính toán bằng công thức. Có nhiều công thức tính, trong đó công thức của Winkelman và Schott được sử dụng nhiều. Winkelman và Schott cho rằng hệ số giãn nở nhiệt của men là quan hệ cộng tính giữa các oxide thành phần. Công thức tính:
Trong đó:
Kết quả trung bình tính toán chính xác ±5%, trị số các số liệu tính toán hệ số giãn nở nhiệt của men dùng ở 400–500 °C được thể hiện trong bảng sau:
Oxide | Trị số x | Oxide | Trị số x | Oxide | Trị số x | Oxide | Trị số x |
---|---|---|---|---|---|---|---|
SiO2 | 0,027 | K2O | 0,283 | BaO | 0,100 | ZrO2 | 0,150 |
B2O3 | 0,003 | CaO | 0,167 | PbO | 0,130 | Sb2O5 | 0,120 |
Al2O3 | 0,167 | MgO | 0,003 | P2O5 | 0,067 | CuO | 0,073 |
Na2O | 0,333 | ZnO | 0,060 | TiO2 | 0,140 | SnO2 | 0,067 |
Cr2O3 | 0,167 | MnO | 0,073 | Fe2O3 | 0,130 | CoO | 0,150 |
Để xác định độ cứng của men phải dùng phương pháp tương ứng với từng loại sản phẩm, mỗi thông số của độ cứng ứng với một phương pháp kiểm tra. Đối với sản phẩm sứ dân dụng như (chén, bát, đĩa...); gạch men ốp tường; sứ kỹ thuật...người ta xác định độ cứng thông qua độ bền chống lại đường vạch (vết xước) và độ bền lún sản phẩm, còn đối với sản phẩm là gạch lát nền, ống dẫn, các loại trang trí bên ngoài...xác định chủ yếu là đo độ bền chống bào mòn. Cách xác định như sau:
Những sản phẩm gốm sứ dùng trong lĩnh vực điện và điện tử ngoài có tiêu chuẩn cao hơn so với các loại gốm khác, đó là hệ số giãn nở nhiệt của xương rất thấp (4,5-6,5.10−5/°C) và yêu cầu độ cách điện cao theo đó, những loại men được sử dụng cần phải đáp ứng. Ảnh hưởng của các oxide có mặt trong pha thủy tinh (men) đến độ cách điện tăng theo dãy sau:
Còn các oxide sau làm giảm điện trở: Al2O3, K2O và Al2O3.
Quan trọng hơn, men ngoài việc phải bảo đảm tính cách điện, tránh các hiện tượng bong và nứt men khi các chi tiết đó làm việc (nhiệt độ, tần số...) còn phải có tính cản trở được sự tạo vỏ nước đọng lại trên men. Có thể sắp xếp các chất tạo thủy tinh theo tứ tự tăng như sau: CaO, BaO, B2O3, Al2O3, Fe2O3, MgO, ZnO, PbO, SiO2..., những oxide này cản trở sự tạo với nước tương ứng với từng điểm tối ưu của nó. Còn K2O và Na2O thì lại thuận lợi cho việc tạo vỏ nước.
Khả năng dẫn điện của men gốm là do ảnh hưởng của kiềm, men có hàm lượng kiềm cao càng có độ dẫn điện lớn, theo Hinz, điều này ứng với sự dao động của các ion kiềm trong mạng lưới thủy tinh. Có thể sử dụng PbO để hạn chế điều này, khi hàm lượng PbO cao thì sự dao động của các ion kiềm bị đình trệ. Tốt hơn hết là không nên dùng kiềm cho sứ cách điện.
Yêu cầu về khả năng bền hóa của men phụ thuộc vào lĩnh vực sử dụng chúng: men mỹ nghệ phải có khả năng chống lại sự tàn phá của môi trường và phải chịu được sự rửa không thường xuyên; chén, bát, sản phẩm lát ngoài trời, trong phòng thí nghiệm... phải chịu được sự ăn mòn acid và kiềm ở nhiệt độ sử dụng tới hạn. Độ bền hóa của men liên quan đến cấu trúc của nó và nhiệt độ nung, tuy nhiên không hẳn là vậy, một men có nhiệt độ nung thấp không hẳn có độ bền hóa cao hơn các men nung ở nhiệt độ cao.
Kreidl và Weyl miêu tả hai cơ chế khác nhau mà các chất hoá học có thể tấn công men:
Mellor theo dõi phản ứng của nước và những nhân tố ăn mòn chung nhận thấy men có độ phức tạp càng cao thì càng bền, men nhiều kiềm thường kém bền, ảnh hưởng của các oxide khác theo thứ tự tăng độ bền như sau:
Mellor cũng kết luận rằng nếu một men được khử ứng suất sẽ có độ bền hoá cao hơn cũng men đó nhưng không khử.
Tất cả các loại men trong quá trình nung đều có gắn ít hoặc nhiều đối với xương sản phẩm. W.Sterger cho rằng khi nung men cần phải tạo ra giữa xương và men một lớp trung gian hay lớp quá độ. Lớp này trong một chừng mực nào đó góp phần điều hòa ứng lực xuất hiện giữa xương và men và có tác dụng làm giảm ứng lực. Lớp trung gian này càng dày thì xương và men càng phù hợp nhau. Về mặt hóa lý, đây là một quá trình phúc tạp bao gồm các phản ứng hóa học do bản chất khác nhau giữa xương và men (tính kiềm của men lớn hơn xương và tính acid ngược lại). Song song quá trình phản ứng hóa học còn có quá trình hòa tan, thấm ướt giữa pha lỏng và pha rắn và quá trình kết tinh.
Sự hình thành lớp trung gian phụ thuộc thành phần xương và men, nhiệt độ nung sản phẩm, thời gian lưu mẫu ở nhiệt độ nung cao nhất, độ xốp của xương sản phẩm cũng như độ tan của từng loại oxide có trong men. Để tạo lớp trung gian, người ta thường cho thêm vào men acid boric, hoặc các chất kiềm khác, tuy nhiên cần lưu ý hệ số giãn nở nhiệt có thể tăng do các loại oxide kiềm gây nên.
Trong các nguyên liệu thì CaCO3, volatonit, đôlômit là những phụ gia trung gian vì nó có tác dụng chống nứt men. Nhưng CaCO3 là tốt hơn cả vì ngoài vai trong tạo lớp trung gian, nó còn cản trở sự trương nở của xương và làm cho các vết nứt sít đặc trở lại.
Màu sắc của men, giống như màu sắc của mọi đồ vật, là do khả năng hấp phụ và phản xạ của men đối với ánh sáng trong vùng nhìn thấy. Màu của men ứng với các bước sóng được men phản xạ trở lại. Nếu men phản xạ mọi bước sóng ánh sáng, nó có màu trắng; nếu men hấp phụ hoàn toàn mọi bước sóng, không phản xạ lại bước sóng nào, nó sẽ có màu đen. Sự hấp thụ và phản xạ ánh sáng, do đó màu sắc, của men phụ thuộc vào thành phần hoá học của men và đặc biệt là số phối trí của các chất cho các màu khác nhau, gọi là các chất tạo màu men.
aa Oxide hoặc muối của kim loại có thể làm chất tạo màu cho men. Cách này tương tự thủy tinh màu nên thường tạo men trong có màu, cường độ mùa tuỳ thuộc vào hàm lượng (%) oxide gây màu đưa vào và bản chất men. Những oxide màu hoặc muối của chúng khi đưa riêng vào men gốm sẽ cho màu thông thường là:
Các chất tạo màu bền nhiệt là các chất tạo màu hầu như không tan trong men nóng chảy mà lại phân tán rất đều trong men. Kiểu này thường tạo màu đục gọi là chất tạo màu nhuộm màu men, tạo men trắng đục thường hay dùng cách này. Phương pháp sản xuất các chất màu này như sau:
Xem thêm trang Rock-team và Bảng mã màu-thành phần hoá-nhiệt độ sử dụng các màu của Rock-team Lưu trữ 2006-04-27 tại Wayback Machine.
Có nhiều cách để phân loại men, đó là:
Về mặt mỹ thuật, men được sử dụng như là một hình thức trang trí, các sản phẩm được trang trí bởi hình thức này là những bình gốm, chậu hoa, các loại tượng.