Cho A và B là các tập hợp, khi đó hợp (cũng được gọi là hội hay union) của A và B là tập gồm tất cả các phần tửA và các phần tử của B, và không chứa phần tử nào khác. Hợp của A và B được viết là "A ∪ B".[1] Hợp là khi chúng ta gộp 2 tập hợp lại với nhau.
Một ví dụ nữa về tính chất là phần tử của: số 9 không nằm trong hợp của các số nguyên tố {2, 3, 5, 7, 11, ...} và tập các số chẵn {2, 4, 6, 8, 10, ...}, vì 9 không nguyên tố và cũng không chẵn.
Tập hợp không thể lặp lại phần tử,[3][4] nên hợp của hai tập {1, 2, 3} và {2, 3, 4} là {1, 2, 3, 4}.
Do vậy, có thể bỏ dấu ngoặc đi mà không làm mất giá trị: cả hai cách viết ở trên đều có thể viết thành Ngoài ra phép hợp còn có giao hoán,do đó có thể đổi chỗ các tập hợp trong biểu thức .[5]Tập rỗng là phần tử trung hòa cho phép hợp. Tức là, với mọi tập Bên cạnh đó phép hợp còn có tính lũy đẳng: Tất cả tính chất này đều tương tự với phép tuyển.
Phép giao phân phối trên phép hợp
và ngược lại, phép hợp phân phối trên phép giao[2]
Tập lũy thừa của tập hợp cùng với phép hợp, phép giao, và phép bù là đại số Boole. Trong đại số Boole này, phép hợp có thể biểu diễn bằng phép giao và bù bằng công thức
trong đó chữ viết trên ký hiệu phần bù trong tập phổ dụng
Mở rộng hơn, ta có thể xét hợp của nhiều tập hợp cùng một lúc.Ví dụ chẳng hạn: hợp của ba tập A, B, và C chứa tất cả các phần tử thuộc A, và tất cả thuộc B, và tất cả thuộc C, và không gì khác nữa. Do vậy, x là phần tử thuộc A ∪ B ∪ C khi và chỉ khi x thuộc ít nhất một trong ba tập A, B, và C.
Hợp hữu hạn là hợp của hữu hạn số các tập hợp; song điều này không có nghĩa phép hợp chỉ áp dụng với hữu hạn số các tập hợp hay phép hợp chỉ áp dụng với tập hữu hạn.[6][7]
Cách viết tổng quát nhất là hợp của một họ tùy ý các tập hợp, đôi khi được gọi là họ vô hạn. Nếu M là tập hợp hay lớp mà các phần tử là các tập hợp thì x là phần tử thuộc hợp của Mkhi và chỉ khitồn tại ít nhất một phần tử A thuộc M sao cho x là phần tử của A.[8] Dưới ký hiệu:
Cách viết này tổng quát hóa cho ví dụ trước, A ∪ B ∪ C là hợp của họ {A, B, C}. Ngoài ra, nếu họ M rỗng, thì hợp của M cũng rỗng.
Ký hiệu cho hợp của một họ có thể khác nhau. Đối với họ hữu hạn các tập , ta có thể viết hoặc . Các cách ký hiệu khác bao gồm , , và . Cách ký hiệu cuối được dùng khi I là tập chỉ số và là tâp hợp với mọi . Trong trường hợp tập chỉ số I là tập các số tự nhiên, ta có thể dùng ký hiệu , tương tự với tổng vô hạn trong chuỗi.[8]
Phép giao – phép toán tập hợp với kết quả là một tập hợp chứa các phần tử thuộc tất cả các tập hợp trong phép toánPages displaying wikidata descriptions as a fallback
Lý thuyết tập hợp ngây thơ – one of several theories of sets used in the discussion of the foundations of mathematics; defined informally, in natural languagePages displaying wikidata descriptions as a fallback
Hiệu đối xứng – Các phần tử chỉ thuộc duy nhất một trong hai tập hợp
^ abVereshchagin, Nikolai Konstantinovich; Shen, Alexander (1 tháng 1 năm 2002). Basic Set Theory (bằng tiếng Anh). American Mathematical Soc. ISBN9780821827314.