Phép hợp

Hợp của AB

Cho AB là các tập hợp, khi đó hợp (cũng được gọi là hội hay union) của AB là tập gồm tất cả các phần tử A và các phần tử của B, và không chứa phần tử nào khác. Hợp của AB được viết là "A B".[1] Hợp là khi chúng ta gộp 2 tập hợp lại với nhau.

Hợp của hai tập hợp

[sửa | sửa mã nguồn]

Hợp của hai tập hợp AB là tập các phần tử vừa thuộc A, vừa thuộc B, hoặc thuộc cả hai AB.[2] Sử dụng ký pháp xây dựng tập hợp,

.[3]

Lấy ví dụ, nếu A = {1, 2, 3, 4} và B = {1, 2, 4, 6, 7} thì AB = {1, 2, 3, 4, 6, 7}. Một ví dụ bao gồm hai tập vô hạn là:

A = {xsố nguyên chẵn lớn hơn 1}
B = {x là số nguyên lẻ lớn hơn 1}

Một ví dụ nữa về tính chất là phần tử của: số 9 không nằm trong hợp của các số nguyên tố {2, 3, 5, 7, 11, ...} và tập các số chẵn {2, 4, 6, 8, 10, ...}, vì 9 không nguyên tố và cũng không chẵn.

Tập hợp không thể lặp lại phần tử,[3][4] nên hợp của hai tập {1, 2, 3} và {2, 3, 4} là {1, 2, 3, 4}.

Tính chất đại số

[sửa | sửa mã nguồn]

Phép hợp hai tập hợp là phép toán hai ngôi có tính kết hợp; nghĩa là, cho bất kỳ tập

Do vậy, có thể bỏ dấu ngoặc đi mà không làm mất giá trị: cả hai cách viết ở trên đều có thể viết thành Ngoài ra phép hợp còn có giao hoán,do đó có thể đổi chỗ các tập hợp trong biểu thức .[5] Tập rỗngphần tử trung hòa cho phép hợp. Tức là, với mọi tập Bên cạnh đó phép hợp còn có tính lũy đẳng: Tất cả tính chất này đều tương tự với phép tuyển.

Phép giao phân phối trên phép hợp và ngược lại, phép hợp phân phối trên phép giao[2]

Tập lũy thừa của tập hợp cùng với phép hợp, phép giao, và phép bùđại số Boole. Trong đại số Boole này, phép hợp có thể biểu diễn bằng phép giao và bù bằng công thức trong đó chữ viết trên ký hiệu phần bù trong tập phổ dụng

Hợp hữu hạn các tập hợp

[sửa | sửa mã nguồn]

Mở rộng hơn, ta có thể xét hợp của nhiều tập hợp cùng một lúc.Ví dụ chẳng hạn: hợp của ba tập A, B, và C chứa tất cả các phần tử thuộc A, và tất cả thuộc B, và tất cả thuộc C, và không gì khác nữa. Do vậy, x là phần tử thuộc ABC khi và chỉ khi x thuộc ít nhất một trong ba tập A, B, và C.

Hợp hữu hạn là hợp của hữu hạn số các tập hợp; song điều này không có nghĩa phép hợp chỉ áp dụng với hữu hạn số các tập hợp hay phép hợp chỉ áp dụng với tập hữu hạn.[6][7]

Hợp của một họ tập hợp

[sửa | sửa mã nguồn]

Cách viết tổng quát nhất là hợp của một họ tùy ý các tập hợp, đôi khi được gọi là họ vô hạn. Nếu M là tập hợp hay lớp mà các phần tử là các tập hợp thì x là phần tử thuộc hợp của M khi và chỉ khi tồn tại ít nhất một phần tử A thuộc M sao cho x là phần tử của A.[8] Dưới ký hiệu:

Cách viết này tổng quát hóa cho ví dụ trước, ABC là hợp của họ {A, B, C}. Ngoài ra, nếu họ M rỗng, thì hợp của M cũng rỗng.

Ký hiệu

[sửa | sửa mã nguồn]

Ký hiệu cho hợp của một họ có thể khác nhau. Đối với họ hữu hạn các tập , ta có thể viết hoặc . Các cách ký hiệu khác bao gồm , , và . Cách ký hiệu cuối được dùng khi Itập chỉ số là tâp hợp với mọi . Trong trường hợp tập chỉ số I là tập các số tự nhiên, ta có thể dùng ký hiệu , tương tự với tổng vô hạn trong chuỗi.[8]

Mã hóa ký hiệu

[sửa | sửa mã nguồn]

Trong Unicode, phép hợp được biểu diễn bằng ký tự U+222A Union.[9] Trong TeX, được viết là \cup còn được viết từ \bigcup.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Nguyễn Tiến Quang (2008), tr. 11
  2. ^ a b “Set Operations | Union | Intersection | Complement | Difference | Mutually Exclusive | Partitions | De Morgan's Law | Distributive Law | Cartesian Product”. Probability Course. Truy cập ngày 5 tháng 9 năm 2020.
  3. ^ a b Vereshchagin, Nikolai Konstantinovich; Shen, Alexander (1 tháng 1 năm 2002). Basic Set Theory (bằng tiếng Anh). American Mathematical Soc. ISBN 9780821827314.
  4. ^ deHaan, Lex; Koppelaars, Toon (25 tháng 10 năm 2007). Applied Mathematics for Database Professionals (bằng tiếng Anh). Apress. ISBN 9781430203483.
  5. ^ Halmos, P. R. (27 tháng 11 năm 2013). Naive Set Theory (bằng tiếng Anh). Springer Science & Business Media. ISBN 9781475716450.
  6. ^ Dasgupta, Abhijit (11 tháng 12 năm 2013). Set Theory: With an Introduction to Real Point Sets (bằng tiếng Anh). Springer Science & Business Media. ISBN 9781461488545.
  7. ^ “Finite Union of Finite Sets is Finite”. ProofWiki. Lưu trữ bản gốc ngày 11 tháng 9 năm 2014. Truy cập ngày 29 tháng 4 năm 2018.
  8. ^ a b Smith, Douglas; Eggen, Maurice; Andre, Richard St (1 tháng 8 năm 2014). A Transition to Advanced Mathematics (bằng tiếng Anh). Cengage Learning. ISBN 9781285463261.
  9. ^ “The Unicode Standard, Version 15.0 - Mathematical Operators - Range: 2200–22FF” (PDF). Unicode. tr. 3.

Thư mục

[sửa | sửa mã nguồn]
  • Nguyễn Tiến Quang (2008), Đại số đại cương, Nhà xuất bản giáo dục
  • Hoàng Xuân Sính (1972), Đại số đại cương (tái bản lần thứ tám), Nhà xuất bản giáo dục

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan