Trong lý thuyết tập hợp, lý thuyết tập hợp Zermelo-Fraenkel, được đặt theo tên của các nhà toán học Ernst Zermelo và Abraham Fraenkel, là một hệ thống tiên đề được đề xuất vào đầu thế kỷ XX để xây dựng một lý thuyết tập hợp không còn các nghịch lý như nghịch lý Russell.
Lý thuyết tập hợp Zermelo–Fraenkel thường được ký hiệu là ZF. Lý thuyết tập hợp Zermelo–Fraenkel cùng với tiên đề chọn được ký hiệu là ZFC.
Một tập hợp hoàn toàn được xác định bởi các phần tử của nó[1]
Mọi tập không rỗng chứa một phần tử sao cho và là rời nhau.
- [2]
Ta có thể xây dựng một tập hợp từ các phần tử trong tập hợp thỏa mãn các tính chất nhất định.[3] Cố định một tính chất , ta có
Nếu và là các tập hợp thì tồn tại một tập hợp chứa và như các phần tử
Theo tiên đề quảng tính, tập hợp đó là duy nhất.[4]
Tiên đề này được sử dụng trong quy nạp siêu hạn với số thứ tự.[5]
Đặt là tập hợp .Ta có[5]
Tiên đề này cho phép xây dựng các số tự nhiên liên tiếp và tập hợp các số tự nhiên.
Tồn tại tập hợp các bộ phận, hay tập lũy thừa:[6]
- ^ Hoàng Xuân Sính (1972), tr. 32
- ^ Shoenfield (2001), tr. 239
- ^ Hoàng Xuân SÍnh (1972), tr.33
- ^ Hoàng Xuân Sính (1972), tr. 34
- ^ a b Hoàng Xuân Sính (1972), tr. 36
- ^ Hoàng Xuân Sính (1972), tr. 35
- Hoàng Xuân Sính, Đại số đại cương (tái bản lần thứ tám), 1972, Nhà xuất bản Giáo dục
- Shoenfield, Joseph R., Mathematical Logic (2nd ed.), 2001, A K Peters. ISBN 978-1-56881-135-2.