Synergistota (anteriormente Synergistetes) é um filo de bactériasgram-negativas anaeróbicas recém descrito e têm forma de célula bastonete / vibrioide[2]. Das 124 sequências do gene 16S rRNA exibidas no banco de dados Synergistes GenBank, apenas duas são derivadas de isolados reais: Synergistes jonesii, número de acesso [[1]], isolado do rúmen de uma cabra[3], e Synergistes sp. estirpe P4G_18P1, número de acesso [[2]], isolado da cavidade oral. Sequências do gene 16S rRNA semelhantes ao Synergistes foram encontradas em inventários moleculares de vários digestores anaeróbios de remoção de poluição[4][5][6], bem como em intestinos de cupins[7][8], trato intestinal de porcos[9], reservatórios de petróleo[10][11] e o ecossistema subgengival humano[12][13]. Utilizando PCR direcionada ao gene 16S rRNA, Godon et al.[14] recentemente exploraram 93 ambientes anaeróbios, incluindo digestores anaeróbicos mesófilos e termofílicos, coalhada, dejetos de suínos, composto, solo de 23 tipos ou locais diferentes, e os intestinos de 49 animais diferentes, além de quatro espécimes de fontes humanas, e encontraram Synergistes presentes em 95% dos ecossistemas analisados, embora sua proporção fosse geralmente inferior a 1%[14][15]. As seqüências de fontes animais formaram seus próprios grupos agrupados, assim como as seqüências de digestores, solo e placa subgengival humana, sugerindo que subgrupos filogeneticamente definidos de organismos do grupo Synergistes (SGOs) ocupam seus próprios nichos ecológicos individuais[14].
É caracterizada como uma bactéria gram-negativa vibrio, ou em forma de bastonete, e é conhecida por ter 0,6-0,8 µm de diâmetro e 1,2-1,8 µm de comprimento. Dado seu habitat dentro do rúmen, é considerado uma bactéria termofílica, que segue sua categorização na subseção de Synergistota: Thermanaerovibrio. Também atribuído ao seu habitat é o fato de que S. jonesii é anaeróbico. Outro aspecto importante é que não contém nenhum cili ou flagelo, tornando-se uma bactéria não-móvel. Uma das facetas mais intrigantes de S. jonesii é a sua capacidade de degradar os piridinodióis tóxicos que de outra forma prejudicariam o hospedeiro ruminante. S. jonesii contém alta atividade da hidrogenase que permite a degradação anaeróbica de pirindinodiol quando também na presença de metil viologen ou na presença de alfa-cetoácidos sob hidrogênio ou nitrogênio gasoso[16].
A detecção molecular da estirpe do tipo S. jonesii (78-1, ATCC 49833) foi demonstrada pela primeira vez por McSweeney et al.[17] (1993)utilizando sondas oligonucleoticas direcionadas para ARN 16S radiomarcadas (32P) e fluorescentes. Posteriormente, conjuntos de primers para detecção baseada em PCR e enumeração de regiões genômicas de S. jonesii foram desenvolvidos por Yang et al.[18] (1999) e posteriormente avaliada para sensibilidade de Anderson et al.[19] (2004). No entanto, a natureza / função deste DNA molde no genoma de S. jonesii era desconhecida, o que levanta dúvidas sobre a especificidade potencial deste método de detecção. Klieve et al.[20] (2002) utilizaram um par de primers do gene 16S rRNA (rADN) consistindo de um primer bacteriano universal (Primer 357F, Lane 1991) e iniciador DHP 1006[17] para amplificar um produto específico de 438 nucleotídeos para S. jonesii.
Outro conjunto de primers 16S rDNA para S. jonesii (sng796f e sng1001r) foi usado por Derakhshani et al. [21](2015), mas não relataram sua validação. Na tentativa de aumentar a sensibilidade e especificidade da detecção, Graham et al.[22] (2013) utilizaram uma abordagem de nested PCR 16S rDNA para monitorar a presença de S. jonesii em bovinos de propriedades do norte da Austrália. Este método detectou S. jonesii em <10% do gado testado, apesar de vários rebanhos terem sido inoculados com a bactéria e a degradação DHP estar ocorrendo. A anise da sequência dos amplics de 16S rDNA de amostras positivas para S. jonesii mostrou que todos apresentavam perfis de sequcias diferentes em comparao com a estirpe de tipo 78-1 de S. jonesii ATCC.
Outro levantamento de ruminantes em diferentes regiões geográficas confirmou a presença de S. jonesii em bovinos, caprinos, ovinos, iaques e búfalos da Austrália, China, Brasil, Tailândia, Indonésia e Vietnã por meio de uma abordagem melhorada de nested 16S rDNA PCR[23].
A análise de sequências destes produtos de PCR revelou pelo menos 4 loci com mutações pontuais (polimorfismos de nucleotídeo único; SNPs) em comparação com a estirpe do tipo ATCC. A especificidade do ensaio de PCR foi melhorada por Halliday et al.[24] (2018), mas mostrou que <50% das amostras do rúmen foram positivas para S. jonesii em um grupo de bovinos que degradam parcialmente a DHP. Estes estudos indicam que a bactéria está freqüentemente presente, mas abaixo do limite de detecção (104‒105 células / mL) e, portanto, ensaios moleculares aprimorados são necessários para o monitoramento de populações de S. jonesii in vivo.
Synergistes jonesii é um quimiorganotrofo que se baseia em produtos químicos orgânicos para sua fonte de energia e carbono. Como S. jonesii é estritamente anaeróbico, a principal via metabólica desse micróbio é a fermentação. Os piridinadiol, arginina e histidina são metabolizados pelo micróbio para energia e carbono. A arginina é metabolizada usando a via da arginina deaminase e ainda é incerto sobre como a histidina é degradada pela célula. Quando a arginina é metabolizada pelas vias da arginina desaminase, seus produtos são dióxido de carbono, acetato, butirato, citrulina e ornitina. Quando a histidina é metabolizada, os produtos são dióxido de carbono, acetato, butirato, citrulina e ornitina, e indiretamente formiato e propionato[25].
Esta bactéria é capaz de utilizar os aminoácidos arginina e histidina para o crescimento[26].
A fonte mais provável do nitrogênio que este micróbio utiliza é a metabolização da arginina e da histidina. Quando ambos os substratos são metabolizados, a amônia é um dos produtos das vias[26].
O Synergistes jonesii é único porque atualmente é o único microrganismo do rúmen conhecido a utilizar a arginina e a histidina como principal fonte de energia e substratos produtores de carbono. Um terceiro aminoácido que S. jonesii parecia capaz de metabolizar era a glicina, embora em menor grau a partir de arginina e histidina. Descobriu-se que a arginina era degradada em S. jonesii pela via da arginina deaminase e produzia dióxido de carbono, acetato, butirato, citrulina e ornitina. O metabolismo de histidina também produziu dióxido de carbono, acetato, butirato, citrulina e ornitina, além de fornecer carbono para formato e propionato. Devido ao fato de que os aminoácidos arginina e histidina são a principal fonte de carbono para Synergistes jonesii, pode permitir que o microorganismo compita no rúmen e ocupe um nicho individualizado dentro da comunidade[26].
O único habitat conhecido para Synergistes jonesii está dentro do rúmen. Este micróbio foi isolado pela primeira vez a partir do rúmen de uma cabra no Havaí e desde então tem sido encontrado no rúmen do gado. S. jonesii não é um micróbio comum nas populações de ruminantes, mas algumas distribuições geográficas foram mostradas[26].