Trong hình học không gian, hình chỏm cầu, hình vòm cầu, hay hình đới cầu có một đáy là một phần của hình cầu bị chia bởi một mặt phẳng. Nếu mặt phẳng đi qua tâm của hình cầu, lúc này chiều cao của chỏm cầu bằng bán kính của hình cầu, và hình chỏm cầu thu về một bán cầu.
Thể tích của hợp hai hình cầu cắt nhau với bán kính lần lượt và là
[2]
,
với
là tổng thể tích của hai hình cầu riêng rẽ, và
là tổng thể tích của hai chỏm cầu hình thành bởi đoạn giao giữa hai hình cầu. Nếu là khoảng cách giữa hai tâm hình cầu, bằng cách loại bỏ các biến và thu được[3][4]
.
Diện tích đường tròn bị chặn bởi các đường tròn vĩ độ
Diện tích của bề mặt bị chặn bởi hai đường tròn vĩ độ (hay mặt đới cầu) bằng hiệu số diện tích của hai chỏm cầu tương ứng với hai đường tròn này. Với hình cầu bán kính , và cho trước các vĩ độ và , diện tích của mặt đới cầu bằng[5]
Ví dụ, giả sử Trái Đất là một hình cầu có bán kính 6371 km, diện tích bề mặt của bắc cực (phía bắc của vòng Bắc Cực, tại vĩ độ 66,56° thời điểm tháng 8 năm 2016[6]) là 2π·6371²|sin 90° − sin 66.56°| = 21,04 triệu km², hay 0.5·|sin 90° − sin 66.56°| = 4,125% tổng diện tích bề mặt của Trái Đất.
Vòm phỏng cầu (spheroidal dome) thu được bằng cách chia một hình phỏng cầu sao cho hình vòm thu được có tính chất đối xứng tròn (circular symmetry) (hay nó có một trục tròn xoay), ví dụ như hình vòm elipsoid nhận được từ ellipsoid.
Công thức biểu diễn cho có thể viết dưới dạng thể tích của khối cầu n chiều đơn vị và hàm siêu hình học (hypergeometric function) hoặc hàm beta chính quy hóa không đầy đủ (regularized incomplete beta function) như sau
,
và công thức diện thích có thể biểu diễn theo số hạng của diện tích khối cầu n chiều đơn vị như
,
với .
Trước đó trong [8] (1986, USSR Academ. Press) công thức sau đã được suy ra:
, với
,
Như được chứng minh trong bài báo [9] rằng, nếu và , thì với là tích phân của phân phối chuẩn.
Một cách tính định lượng hơn của biểu diễn trên, như nêu trong [10] với giá trị chặn được dẫn ra.
Đối với chỏm cầu rất lớn (nghĩa là khi khi ), giá trị chặn thu gọn thành .
^Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. 2016. New directions in nearest neighbor searching with applications to lattice sieving. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA '16), Robert Kraughgamer (Ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 10-24.
Richmond, Timothy J. (1984). “Solvent accessible surface area and excluded volume in proteins: Analytical equation for overlapping spheres and implications for the hydrophobic effect”. J. Mol. Biol. 178 (1): 63–89. doi:10.1016/0022-2836(84)90231-6.
Gibson, K. D.; Scheraga, Harold A. (1987). “Volume of the intersection of three spheres of unequal size: a simplified formula”. J. Phys. Chem. 91 (15): 4121–4122. doi:10.1021/j100299a035.
Gibson, K. D.; Scheraga, Harold A. (1987). “Exact calculation of the volume and surface area of fused hard-sphere molecules with unequal atomic radii”. Mol. Phys. 62 (5): 1247–1265. Bibcode:1987MolPh..62.1247G. doi:10.1080/00268978700102951.
Petitjean, Michel (1994). “On the analytical calculation of van der Waals surfaces and volumes: some numerical aspects”. Int. J. Quant. Chem. 15 (5): 507–523. doi:10.1002/jcc.540150504.
Grant, J. A.; Pickup, B. T. (1995). “A Gaussian description of molecular shape”. J. Phys. Chem. 99 (11): 3503–3510. doi:10.1021/j100011a016.
Busa, Jan; Dzurina, Jozef; Hayryan, Edik; Hayryan, Shura (2005). “ARVO: A fortran package for computing the solvent accessible surface area and the excluded volume of overlapping spheres via analytic equations”. Comp. Phys. Commun. 165: 59–96. Bibcode:2005CoPhC.165...59B. doi:10.1016/j.cpc.2004.08.002.