Trong hóa học, phi kim là một nhóm nguyên tố hóa học mà tính kim loại của những nguyên tố này không chiếm ưu thế. Ở điều kiện tiêu chuẩn (298 K và 1 bar), trạng thái vật chất của phi kim đa dạng, từ khí không màu (như hydro) đến chất rắn ánh kim có nhiệt độ nóng chảy cao (như bor). Các electron trong phi kim hoạt động khác với các electron trong kim loại. Trừ một số ngoại lệ, thông thường, các electron của phi kim được cố định tại chỗ, do đó phi kim có tính dẫn nhiệt và dẫn điện kém và các phi kim ở trạng thái rắn thường giòn hoặc vỡ vụn. Còn electron trong kim loại nói chung chuyển động tự do và đây là lý do vì sao mà kim loại là chất dẫn điện tốt và hầu hết kim loại có thể dễ dàng kéo sợi. Các nguyên tử phi kim có độ âm điện từ trung bình đến cao; chúng có xu hướng nhận electron trong các phản ứng hóa học và tạo thành các hợp chất có tính acid.
Hầu hết các phi kim có vai trò trong sinh học, công nghệ hoặc ngành nông nghiệp. Các sinh vật sống được cấu tạo gần như hoàn toàn từ các phi kim hydro, oxy, carbon và nitơ. Gần như tất cả các phi kim đều có những ứng dụng riêng trong y học và dược phẩm; laser và ánh sáng; đồ gia dụng trong gia đình.
Thuật ngữ phi kim loại (non-metallic) có từ ít nhất là năm 1566, cho đến nay chưa có định nghĩa chính xác nào được thống nhất rộng rãi về phi kim. Một số nguyên tố có sự pha trộn rõ rệt của tính chất kim loại và phi kim; các nguyên tố nằm giữa ranh giới phi kim–kim loại có thể xếp vào các nhóm khác nhau tùy thuộc vào tiêu chí phân loại. Có 14 nguyên tố luôn được công nhận là phi kim và có 9 nguyên tố nữa có thể xếp vào phi kim hay kim loại tùy thuộc vào tiêu chí xếp loại của bảng tuần hoàn.
Phi kim là một nguyên tố hóa học có khối lượng riêng tương đối thấp và độ âm điện từ trung bình đến cao. Nhìn chung, các nguyên tố này không có hoặc ít tính chất của một kim loại hơn như ánh kim, khả năng uốn dẻo kéo sợi, dẫn nhiệt và điện tốt, và độ âm điện thấp.[1] Vì không có định nghĩa chặt chẽ về phi kim[2][3][4] nên có thể gặp nhiều biến thể phân loại các nguyên tố là phi kim hay kim loại, phụ thuộc vào tính chất của nguyên tố và quan điểm tính chất đó được coi là biểu hiện của tính chất phi kim hoặc kim loại.[5]
Năm 2020, mặc dù Steudel[6] đã công nhận 23 nguyên tố là phi kim, nhưng vẫn còn nhiều quan điểm gây tranh cãi. 14 chất được chấp nhận một cách rộng rãi gồm hydro, oxy, nitơ, lưu huỳnh; các halogen như fluor, chlor, brom và iod; khí hiếm như heli, neon, argon, krypton, xenon và radon; (Larrañaga và cộng sự). Các tác giả này công nhận carbon, phosphor và seleni là phi kim, tuy nhiên Vernon[7] trước đó cho rằng ba nguyên tố này được tính là nguyên tố á kim. Các nguyên tố thường được công nhận là á kim gồm bor, silic, germani, arsenic, antimon và teluri do các tiêu chí được sử dụng để phân biệt giữa kim loại và phi kim không đủ để đưa đi đến kết luận. Dưới góc nhìn theo tính chất hóa học, các nguyên tố á kim nêu trên được xếp vào nguyên tố phi kim.
Trong số 118 nguyên tố đã biết,[8] chỉ có 23 nguyên tố có thể được coi là phi kim.[9]Astatin, halogen thứ năm, thường bị bỏ qua do tính hiếm và tính phóng xạ mạnh;[10] Bằng chứng lý thuyết gián tiếp và bằng chứng thực nghiệm cho thấy astatin là một kim loại.[11] Các nguyên tố siêu nặng như copernici (Z = 112) và oganesson (118) có thể là phi kim; nhưng quan điểm này chưa được xác nhận.[12]
Khoảng một nửa số nguyên tố phi kim là khí có màu hoặc không màu; phần còn lại phần lớn là chất rắn có tính ánh kim. Brom là chất lỏng duy nhất dễ bay hơi đến nỗi khi đựng brom thì thường thấy lớp khói của nó bao phủ xung quanh. Lưu huỳnh là phi kim rắn có màu duy nhất. Các phi kim lỏng có tỷ trọng, nhiệt độ nóng chảy và nhiệt độ sôi rất thấp, và là chất dẫn nhiệt và dẫn điện kém.[13] Các nguyên tố phi kim rắn có khối lượng riêng thấp, giòn hoặc dễ gãy, vỡ vụn với độ bền cơ học và cấu trúc thấp.[14] Có thể dẫn điện kém, có thể dẫn điện tốt, tùy vào từng nguyên tố.
Cấu trúc đa dạng và sự sắp xếp liên kết của các phi kim giải thích sự khác biệt về trạng thái vật chất. Những nguyên tử tồn tại dưới dạng nguyên tử rời rạc (ví dụ: xenon) hoặc phân tử (ví dụ: oxy, lưu huỳnh, brom) có xu hướng có nhiệt độ nóng chảy và nhiệt độ sôi thấp khi chúng được giữ với nhau bởi lực phân tán London (London dispersion forces). Đây là một loại lực liên phân tử yếu tác dụng giữa các nguyên tử và phân tử của chúng,[15] do vậy ở nhiệt độ phòng, chúng là chất khí. Các phi kim tạo thành cấu trúc khổng lồ, chẳng hạn như chuỗi có tới 1.000 nguyên tử (ví dụ: seleni),[16] dạng lớp (ví dụ: carbon) hoặc mạng lưới ba chiều (ví dụ: silic), có nhiệt độ nóng chảy và nhiệt độ sôi cao hơn, vì cần nhiều năng lượng hơn để phá vỡ liên kết cộng hóa trị giữa chúng; do vậy, ở nhiệt độ phòng, chúng đều là chất rắn. Những nguyên tố ở gần bên trái của bảng tuần hoàn, hoặc xa hơn một cột, thường có một số tương tác á kim yếu giữa các phân tử hay các nguyên tử với nhau, phù hợp với tính chất vừa kim loại, vừa phi kim của chúng, gồm bor, [17]carbon,[18]phosphor, [19]arsen, [20]seleni,[21]antimon,[22]teluri,[23] và iod.[24]
Tính dẫn điện, dẫn nhiệt và tính dẻo của phi kim rắn cũng liên quan đến sự sắp xếp cấu trúc bên trong. Trong khi độ dẫn điện và độ dẻo thường liên quan đến sự hiện diện của các electron chuyển động tự do và phân bố đồng đều trong kim loại[25] các electron của phi kim thường thiếu tính linh động như vậy.[26] Các nguyên tố phi kim dẫn điện và dẫn nhiệt tốt chỉ có ở carbon, arsenic và antimon. Mặt khác, tính dẫn nhiệt tốt chỉ có ở các nguyên tố bor, silic, phosphor và germani, dựa trên độ dao động của tinh thể.[27] Độ dẫn điện trung bình có ở nguyên tố bor, silic, phosphor, germani, seleni, teluri và iod. Tính dẻo có ở carbon, phosphor, lưu huỳnh, seleni và các á kim.
Sự khác biệt về tính chất vật lý giữa kim loại và phi kim là do từ các lực nguyên tử bên trong và bên ngoài. Bên trong, điện tích dương có nguồn gốc từ proton trong hạt nhân nguyên tử có tác dụng giữ các electron của vỏ nguyên tử tại chỗ. Bên ngoài, các electron chịu lực hấp dẫn từ proton trong các nguyên tử lân cận. Khi ngoại lực lớn hơn hoặc bằng nội lực, các electron bên ngoài sẽ chuyển động tự do giữa các nguyên tử và mang đặc tính của kim loại, nếu không xảy ra điều này thì nguyên tố sẽ mang đặc tính của phi kim.[28]
Các phi kim có giá trị độ âm điện từ trung bình đến cao. Trong các phản ứng hóa học, các phi kim có xu hướng tạo thành các hợp chất có tính acid. Ví dụ, các phi kim rắn (bao gồm cả á kim) phản ứng với acid nitric để tạo thành một acid hoặc một oxide acid hoặc có tính acid chiếm ưu thế.[33]
Chúng có xu hướng nhận hoặc chia sẻ electron khi chúng phản ứng, không giống như kim loại có xu hướng "tặng" electron. Cụ thể hơn, với sự ổn định của cấu hình electron của các khí hiếm (có lớp vỏ bên ngoài ổn định), các phi kim nói chung thu được một số electron đủ để tạo cho chúng cấu hình electron của khí hiếm trong khi các kim loại có xu hướng mất electron, nhưng như thế lại là đủ để giúp chúng có cấu hình electron của khí hiếm. Đối với các nguyên tố phi kim, xu hướng này được tóm tắt trong quy tắc nhị tử và quy tắc bát tử (và đối với kim loại thì quy tắc 18 electron ít được tuân thủ chặt chẽ hơn).[34]
Về mặt định lượng, các phi kim hầu hết có năng lượng ion hóa, ái lựcelectron, giá trị độ âm điện và thế khử chuẩn hơn kim loại. Nói chung, các giá trị này càng cao thì nguyên tố đó càng có nhiều đặc tính của phi kim.[35]
Sự khác biệt hóa học giữa kim loại và phi kim phần lớn phát sinh từ lực hút giữa các hạt proton mang điện tích dương trong hạt nhân của một nguyên tử riêng lẻ và các electron bên ngoài mang điện tích âm. Từ trái sang phải, qua mỗi chu kỳ của bảng tuần hoàn, điện tích hạt nhân tăng khi số proton trong hạt nhân nguyên tử tăng lên.[36]Bán kính nguyên tử giảm dần[37] và điện tích hạt nhân tăng dần sẽ tạo một lực kéo các electron bên ngoài lại gần hạt nhân hơn.[38] Trong kim loại, ảnh hưởng của điện tích hạt nhân nói chung yếu hơn so với phi kim. Trong liên kết hóa học, kim loại có xu hướng cho electron và hình thành các ion mang điện tích dương, trong khi đó phi kim lại có xu hướng nhận electron do điện tích hạt nhân mạnh hơn và hình thành nên các ion mang điện tích âm.[39]
Số lượng các hợp chất được tạo thành bởi phi kim là rất lớn.[40] Trong tài liệu của Số đăng ký CAS ngày 2 tháng 11 năm 2021, trong bảng "top 20" các nguyên tố thường gặp nhất trong 895.501.834 hợp chất được liệt kê, 10 vị trí đầu tiên đều là phi kim. Hydro, carbon, oxy và nitơ được tìm thấy trong phần lớn các hợp chất (80%). Silic, một loại á kim, đứng ở vị trí thứ 11. Sắt là kim loại phổ biến nhất, chiếm 0,14%, đứng ở vị trí thứ 12 trong bảng xếp hạng.[41] Một vài ví dụ về các hợp chất phi kim là: acid boric (H 3BO 3), được sử dụng trong men gốm, selenocysteine (C 3H 7NO 2Se), acid amin,[42]phosphor sesquisulfide (P4S3) có trong diêm, và teflon ((C 2F 4)n),[43] được sử dụng trong lớp phủ chống dính cho chảo và dụng cụ nấu nướng.
Các phi kim ở hàng đầu tiên của mỗi khối trong bảng tuần hoàn có tính chất hóa học khá phức tạp. Những ngoại lệ này rất nổi bật ở hydro, bor (cho dù là phi kim hay á kim), carbon, nitơ, oxy và fluor. Ở các hàng sau, phi kim có xu hướng không đồng nhất khi đi dần xuống.[44]
Chu kỳ 1 có nhiều khác biệt với các chu kỳ còn lại là do cấu hình electron của các nguyên tố. Hydro thường hình thành liên kết cộng hóa trị. Dung dịch có dung môi là nước, nguyên tử hydro mất electron độc thân để tồn tại dưới dạng ion hydro, để lại một proton trần có tính phân cực lớn.[45] Do đó, ion hydro này tự gắn vào cặp electron không liên kết của nguyên tử oxy trong phân tử nước, hình thành nên tính chất của acid và base.[46] Nguyên tử hydro trong phân tử có thể tạo liên kết hydro (một loại liên kết yếu), với nguyên tử hoặc nhóm nguyên tử trong phân tử khác. Sự liên kết như vậy "định hình tính đối xứng lục giác của bông tuyết, hình thành chuỗi xoắn kép của DNA; quy định cấu trúc 3 chiều của protein; và thậm chí còn làm tăng nhiệt độ sôi của nước lên đủ cao để pha một tách trà ngon".[47]
Hydro, heli, và các nguyên tử từ bor đến neon trong bảng tuần hoàn có bán kính nguyên tử nhỏ bất thường. Nguyên nhân là do các phân lớp electron 1s và 2p không có phân lớp 0s và 1p và do đó chúng không chịu lực đẩy electron, không giống như các phân lớp 3p, 4p và 5p của các nguyên tố nặng hơn.[48] Như một hệ quả, năng lượng ion hóa và độ âm điện của nguyên tố này cao bất thường. Bán kính nguyên tử của carbon, nitơ và oxy tạo điều kiện thuận lợi cho việc hình thành liên kết đôi hoặc liên kết ba.[49]
Mặc dù trên cơ sở nhất quán về cấu hình electron thì vị trí của hydro và heli trong bảng tuần hoàn sẽ nằm trên vị trí của nguyên tố s. Đôi khi vị trí hydro ở trên flour, ở nhóm 17 (nhóm VIIA) hơn là trên lithi ở nhóm 1 (nhóm IA). Vị trí của nguyên tố heli thường ở trên neon ở nhóm 18 (nhóm VIIIA), thay vì trên beryl ở nhóm 2 (nhóm IIA).[50]
^Taniguchi et al. 1984, p. 867: "... black phosphorus ... [is] characterized by the wide valence bands with rather delocalized nature."; Morita 1986, p. 230; Carmalt & Norman 1998, p. 7: "Phosphorus ... should therefore be expected to have some metalloid properties."; Du et al. 2010. Interlayer interactions in black phosphorus, which are attributed to van der Waals-Keesom forces, are thought to contribute to the smaller band gap of the bulk material (calculated 0.19 eV; observed 0.3 eV) as opposed to the larger band gap of a single layer (calculated ~0.75 eV).
^Steudel 1977, p. 240: "... considerable orbital overlap must exist, to form intermolecular, many-center ... [sigma] bonds, spread through the layer and populated with delocalized electrons, reflected in the properties of iodine (lustre, color, moderate electrical conductivity)."; Segal 1989, p. 481: "Iodine exhibits some metallic properties ..."
Abbott D 1966, An Introduction to the Periodic Table, J. M. Dent & Sons, London
Arblaster JW (ed.) 2018, Selected Values of the Crystallographic Properties of Elements, ASM International, Materials Park, Ohio, ISBN 978-1-62708-154-2
Atkins PA 2001, The Periodic Kingdom: A Journey Into the Land of the Chemical Elements, Phoenix, London, ISBN978-1-85799-449-0
Atkins PA et al. 2006, Shriver & Atkins' Inorganic Chemistry, 4th ed., Oxford University Press, Oxford, ISBN978-0-7167-4878-6
Atkins PA & Overton T 2010, Shriver & Atkins' Inorganic Chemistry, 5th ed., Oxford University Press, Oxford, ISBN978-0-19-923617-6
Aylward G and Findlay T 2008, SI Chemical Data, 6th ed., John Wiley & Sons Australia, Milton, ISBN978-0-470-81638-7
Bailar JC, Moeller T & Kleinberg J 1965, University Chemistry, DC Heath, Boston
Bailar JC et al. 1989, Chemistry, 3rd ed., Harcourt Brace Jovanovich, San Diego, ISBN978-0-15-506456-0
Barton AFM 2021, States of Matter, States of Mind, CRC Press, Boca Raton, ISBN978-0-7503-0418-4
Beach FC (ed.) 1911, The Americana: A universal reference library, vol. XIII, Mel–New, Metalloid, Scientific American Compiling Department, New York
Benner SA, Ricardo A & Carrigan MA 2018, "Is there a common chemical model for life in the universe?", in Cleland CE & Bedau MA (eds.), The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science, Cambridge University Press, Cambridge, ISBN978-1-108-72206-3
Berger LI 1997, Semiconductor Materials, CRC Press, Boca Raton, ISBN978-0-8493-8912-2
Bertomeu-Sánchez JR, Garcia-Belmar A & Bensaude-Vincent B 2002, "Looking for an order of things: Textbooks and chemical classifications in nineteenth century France", Ambix, vol. 49, no. 3, doi:10.1179/amb.2002.49.3.227
Berzelius JJ & Bache AD 1832, "An essay on chemical nomenclature, prefixed to the treatise on chemistry", The American Journal of Science and Arts, vol. 22
Boysen B, Cristóbal J & Hilbig J 2020, "Economic and environmental assessment of water reuse in industrial parks: case study based on a Model Industrial Park", Journal of Water Reuse and Desalination, vol. 10, no. 4, pp. 475–489, doi: 10.2166/wrd.2020.034
Brady JE & Senese F 2009, Chemistry: The study of Matter and its Changes, 5th ed., John Wiley & Sons, New York, ISBN978-0-470-57642-7
Brande WT 1821, A Manual of Chemistry, vol. II, John Murray, London
Brodsky MH, Gambino RJ, Smith JE Jr & Yacoby Y 1972, "The Raman spectrum of amorphous tellurium", Physica Status Solidi B, vol. 52, doi:10.1002/pssb.2220520229
Brown TL et al. 2014, Chemistry: The Central Science, 3rd ed., Pearson Australia: Sydney, ISBN978-1-4425-5460-3
Burford N, Passmore J & Sanders JCP 1989, "The preparation, structure, and energetics of homopolyatomic cations of groups 16 (the chalcogens) and 17 (the halogens)", in Liebman JF & Greenberg A (eds.), From atoms to polymers: isoelectronic analogies, VCH, New York, ISBN978-0-89573-711-3
Cacace F, de Petris G & Troiani A 2002, "Experimental detection of tetranitrogen", Science, vol. 295, no. 5554, doi:10.1126/science.1067681
Cao C et al. 2021, "Understanding periodic and non-periodic chemistry in periodic tables", Frontiers in Chemistry, vol. 8, no. 813, doi:10.3389/fchem.2020.00813
Carapella SC 1968, "Arsenic" in Hampel CA (ed.), The Encyclopedia of the Chemical Elements, Reinhold, New York
Carmalt CJ & Norman NC 1998, 'Arsenic, antimony and bismuth: Some general properties and aspects of periodicity', in Norman NC (ed.), Chemistry of Arsenic, Antimony and Bismuth, Blackie Academic & Professional, London, pp. 1–38, ISBN0-7514-0389-X
Challoner J 2014, The Elements: The New Guide to the Building Blocks of our Universe, Carlton Publishing Group, ISBN978-0-233-00436-5
Chambers E 1743, in "Metal", Cyclopedia: Or an Universal Dictionary of Arts and Sciences (etc.), vol. 2, D Midwinter, London
Chambers C & Holliday AK 1982, Inorganic Chemistry, Butterworth & Co., London, ISBN978-0-408-10822-5
Chand H, Kumar A & Bhumla P 2022, "Scalable production of ultrathin boron nanosheets from a low-cost precursor", Advanced Materials Interfaces, vol. 9, no. 2, doi:10.1002/admi.202200508
Charlier J-C, Gonze X, Michenaud J-P 1994, First-principles study of the stacking effect on the electronic properties of graphite(s), Carbon, vol. 32, no. 2, pp. 289–99, doi:10.1016/0008-6223(94)90192-9
Cherim SM 1971, Chemistry for Laboratory Technicians, Saunders, Philadelphia, ISBN978-0-7216-2515-7
Chung DD 1987, "Review of exfoliated graphite", Journal of Materials Science, vol. 22, doi:10.1007/BF01132008
Clugston MJ & Flemming R 2000, Advanced Chemistry, Oxford University Press, Oxford, ISBN978-0-19-914633-8
Cockell C 2019, The Equations of Life: How Physics Shapes Evolution, Atlantic Books, London, ISBN978-1-78649-304-0
Cook CG 1923, Chemistry in Everyday Life: With Laboratory Manual, D Appleton, New York
Cotton A et al. 1999, Advanced Inorganic Chemistry, 6th ed., Wiley, New York, ISBN978-0-471-19957-1
Cousins DM, Davidson MG & García-Vivó D 2013, "Unprecedented participation of a four-coordinate hydrogen atom in the cubane core of lithium and sodium phenolates", Chemical Communications, vol. 49, doi:10.1039/C3CC47393G
Cox AN (ed.) 2000, Allen's Astrophysical Quantities, 4th ed., AIP Press, New York, ISBN978-0-387-98746-0
Cox PA 1997, The Elements: Their Origins, Abundance, and Distribution, Oxford University Press, Oxford, ISBN978-0-19-855298-7
Crawford FH 1968, Introduction to the Science of Physics, Harcourt, Brace & World, New York
Crichton R 2012, Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, 2nd ed., Elsevier, Amsterdam, ISBN978-0-444-53783-6
Criswell B 2007, "Mistake of having students be Mendeleev for just a day", Journal of Chemical Education, vol. 84, no. 7, pp. 1140–1144, doi:10.1021/ed084p1140
Dalakov P, Neuber E & Herzog R 2020, "Innovative neon refrigeration unit operating down to 30 K", MATEC Web of Conferences, vol. 324, doi: 10.1051/matecconf/202032401003
Daniel PL & Rapp RA 1976, "Halogen corrosion of metals", in Fontana MG & Staehle RW (eds.), Advances in Corrosion Science and Technology, Springer, Boston, doi:10.1007/978-1-4615-9062-0_2
de L'Aunay L 1566, Responce au discours de maistre Iacques Grevin, docteur de Paris, qu'il a escript contre le livre de maistre Loys de l'Aunay, medecin en la Rochelle, touchant la faculté de l'antimoine (Response to the Speech of Master Jacques Grévin,... Which He Wrote Against the Book of Master Loys de L'Aunay,... Touching the Faculty of Antimony), De l'Imprimerie de Barthelemi Berton, La Rochelle
Dingle A 2017, The Elements: An Encyclopedic Tour of the Periodic Table, Quad Books, Brighton, ISBN978-0-85762-505-2
Donohue J 1982, The Structures of the Elements, Robert E. Krieger, Malabar, Florida, ISBN978-0-89874-230-5
Du Y, Ouyang C, Shi S & Lei M 2010, "Ab initio studies on atomic and electronic structures of black phosphorus", Journal of Applied Physics, vol. 107, no. 9, pp. 093718–1–4, doi:10.1063/1.3386509
Dupasquier A 1844, Traité élémentaire de chimie industrielle, Charles Savy Juene, Lyon
Earl B & Wilford D 2021, Cambridge O Level Chemistry, Hodder Education, London, ISBN978-1-3983-1059-9
Edelstein NM & Morrs LR 2009, "Chemistry of the actinide elements", in Nagy S (ed.), Radiochemistry and Nuclear Chemistry: Volume II, Encyclopedia of Life Support Systems, EOLSS Publishers, Oxford, pp. 118–176, ISBN978-1-84826-577-6
Edwards PP 2000, "What, why and when is a metal?", in Hall N (ed.), The New Chemistry, Cambridge University, Cambridge, pp. 85–114, ISBN978-0-521-45224-3
Edwards PP et al. 2010, "... a metal conducts and a non-metal doesn’t", Philosophical Transactions of the Royal Society A, 2010, vol, 368, no. 1914, doi:10.1098/rsta.2009.0282
Edwards PP & Sienko MJ 1983, "On the occurrence of metallic character in the periodic table of the elements", Journal of Chemical Education, vol. 60, no. 9, doi:10.1021/ed060p691, PMID25666074
Elatresh SF & Bonev SA 2020, "Stability and metallization of solid oxygen at high pressure", Physical Chemistry Chemical Physics, vol. 22, no. 22, doi:10.1039/C9CP05267D
Elliot A 1929, "The absorption band spectrum of chlorine", Proceedings of the Royal Society A, vol. 123, no. 792, pp. 629–644, doi:10.1098/rspa.1929.0088
Emsley J 1971, The Inorganic Chemistry of the Non-metals, Methuen Educational, London, ISBN978-0-423-86120-4
Encyclopædia Britannica 2021, Periodic table, accessed September 21, 2021
Errandonea D 2020, "Pressure-induced phase transformations", Crystals, vol. 10, doi:10.3390/cryst10070595
Evans RC 1966, An Introduction to Crystal Chemistry, 2nd ed., Cambridge University, Cambridge
Faraday M 1853, The Subject Matter of a Course of Six Lectures on the Non-metallic Elements, (arranged by John Scoffern), Longman, Brown, Green, and Longmans, London
Florez et al. 2022, From the gas phase to the solid state: The chemical bonding in the superheavy element flerovium, The Journal of Chemical Physics, vol. 157, 064304, doi:10.1063/5.0097642
Fortescue JAC 2012, Environmental Geochemistry: A Holistic Approach, Springer-Verlag, New York, ISBN978-1-4612-6047-9
Fox M 2010, Optical Properties of Solids, 2nd ed., Oxford University Press, New York, ISBN 978-0-19-957336-3
Fraps GS 1913, Principles of Agricultural Chemistry, The Chemical Publishing Company, Easton, PA
Fraústo da Silva JJR & Williams RJP 2001, The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd ed., Oxford University Press, Oxford, ISBN978-0-19-850848-9
Gaffney J & Marley N 2017, General Chemistry for Engineers, Elsevier, Amsterdam, ISBN978-0-12-810444-6
Gardner AJ & Menon DK 2018, "Moving to human trials for argon neuroprotection in neurological injury: A narrative review", British Journal of Anaesthesia, vol. 120, no. 4, pp. 453–468, doi: 10.1016/j.bja.2017.10.017
Gargaud M et al. (eds.) 2006, Lectures in Astrobiology, vol. 1, part 1: The Early Earth and Other Cosmic Habitats for Life, Springer, Berlin, ISBN978-3-540-29005-6
Glinka N 1958, General chemistry, Sobolev D (trans.), Foreign Languages Publishing House, Moscow
Godfrin H & Lauter HJ 1995, "Experimental properties of 3He adsorbed on graphite", in Halperin WP (ed.), Progress in Low Temperature Physics, volume 14, Elsevier Science B.V., Amsterdam, ISBN978-0-08-053993-5
Godovikov AA & Nenasheva N 2020, Structural-chemical Systematics of Minerals, 3rd ed., Springer, Cham, Switzerland, ISBN978-3-319-72877-3
Goodrich BG 1844, A Glance at the Physical Sciences, Bradbury, Soden & Co., Boston
Greenwood NN & Earnshaw A 2002, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, ISBN978-0-7506-3365-9
Grochala W 2018, "On the position of helium and neon in the Periodic Table of Elements", Foundations of Chemistry, vol. 20, pp. 191–207, doi:10.1007/s10698-017-9302-7
Gusmão R, Sofer Z & Pumera M 2017, "Black phosphorus rediscovered: From bulk material to monolayers", Angewandte Chemie International Edition, vol. 56, no. 28, doi:10.1002/anie.201610512
Hampel CA & Hawley GG 1976, Glossary of Chemical Terms, Van Nostrand Reinhold, New York, ISBN978-0-442-23238-2
Hanley JJ & Koga KT 2018, "Halogens in terrestrial and cosmic geochemical systems: Abundances, geochemical behaviours, and analytical methods" in The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle, Harlov DE & Aranovich L (eds.), Springer, Cham, ISBN978-3-319-61667-4
Hare RA & Bache F 1836, Compendium of the Course of Chemical Instruction in the Medical Department of the University of Pennsylvania, 3rd ed., JG Auner, Philadelphia
Hein M & Arena S 2013, Foundations of College Chemistry, John Wiley & Sons, ISBN978-1-118-29823-7
Hengeveld R & Fedonkin MA 2007, "Bootstrapping the energy flow in the beginning of life", Acta Biotheoretica, vol. 55, doi:10.1007/s10441-007-9019-4
Herman ZS 1999, "The nature of the chemical bond in metals, alloys, and intermetallic compounds, according to Linus Pauling", in Maksić, ZB, Orville-Thomas WJ (eds.), 1999, Pauling's Legacy: Modern Modelling of the Chemical Bond, Elsevier, Amsterdam, doi:10.1016/S1380-7323(99)80030-2
Hermann A, Hoffmann R & Ashcroft NW 2013, "Condensed astatine: Monatomic and metallic", Physical Review Letters, vol. 111, doi:10.1103/PhysRevLett.111.116404
Hill G, Holman J & Hulme PG 2017, Chemistry in Context, 7th ed., Oxford University Press, Oxford, ISBN978-0-19-839618-5
Holderness A & Berry M 1979, Advanced Level Inorganic Chemistry, 3rd ed., Heinemann Educational Books, London, ISBN978-0-435-65435-1
Höll, Kling & Schroll E 2007, "Metallogenesis of germanium—A review", Ore Geology Reviews, vol. 30, nos. 3–4, pp. 145–180, doi:10.1016/j.oregeorev.2005.07.034
Homberg W 1708, "Des essais de chimie", in Histoire de l'Académie Royale des Sciences: Avec les Memoires de Mathematique & de Physique, L'Académie, Paris
Horvath AL 1973, "Critical temperature of elements and the periodic system", Journal of Chemical Education, vol. 50, no. 5, doi:10.1021/ed050p335
Housecroft CE & Sharpe AG 2008, Inorganic Chemistry, 3rd ed., Prentice-Hall, Harlow, ISBN978-0-13-175553-6
Howe-Grant MI (ed.) 1995, Fluorine Chemistry: A Comprehensive Treatment, John Wiley and Sons, New York, p. 17, ISBN 978-0-471-12031-5
Hu Z, Shen Z & Yu JC 2017, "Phosphorus containing materials for photocatalytic hydrogen evolution", Green Chemistry, vol. 19, no. 3, pp. 588–613, doi:10.1039/C6GC02825J
Hurlbut Jr CS 1961, Manual of Mineralogy, 15th ed., John Wiley & Sons, New York
Hussain et al. 2023, "Tuning the electronic properties of molybdenum di-sulphide monolayers via doping using first-principles calculations", Physica Scripta, vol. 98, no. 2, doi:10.1088/1402-4896/acacd1
Janas D, Cabrero-Vilatela, A & Bulmer J 2013, "Carbon nanotube wires for high-temperature performance", Carbon, vol. 64, pp. 305–314, doi:10.1016/j.carbon.2013.07.067
Jenkins GM & Kawamura K 1976, Polymeric Carbons—Carbon Fibre, Glass and Char, Cambridge University Press, Cambridge, ISBN978-0-521-20693-8
Jentzsch AV & Matile S 2015, "Anion transport with halogen bonds", in Metrangolo P & Resnati G (eds.), Halogen Bonding I: Impact on Materials Chemistry and Life Sciences, Springer, Cham, ISBN978-3-319-14057-5
Johnson D (ed.) 2007, Metals and Chemical Change, RSC Publishing, Cambridge, ISBN978-0-85404-665-2
Johnson RC 1966, Introductory Descriptive Chemistry, WA Benjamin, New York
Jolly WL 1966, The Chemistry of the Non-metals, Prentice-Hall, Englewood Cliffs, New Jersey
Jones BW 2010, Pluto: Sentinel of the Outer Solar System, Cambridge University, Cambridge, ISBN978-0-521-19436-5
Keeler J & Wothers P 2013, Chemical Structure and Reactivity: An Integrated Approach, Oxford University Press, Oxford, ISBN978-0-19-960413-5
Kendall EA 1811, Pocket Encyclopædia, 2nd ed., vol. III, Longman, Hurst, Rees, Orme, and Co., London
Kernion MC & Mascetta JA 2019, Chemistry: The Easy Way, 6th ed., Kaplan, New York, ISBN978-1-4380-1210-0
Khan N 2001, An Introduction to Physical Geography, Concept Publishing, New Delhi, ISBN978-81-7022-898-1
Kim MG 2000, "Chemical analysis and the domains of reality: Wilhelm Homberg's Essais de chimie, 1702–1709", Studies in History and Philosophy of Science Part A, vol. 31, no. 1, pp. 37–69, doi:10.1016/S0039-3681(99)00033-3
Siekierski S & Burgess J 2002, Concise Chemistry of the Elements, Horwood Press, Chichester, ISBN978-1-898563-71-6
Strathern P 2000, Mendeleyev's dream: The Quest for the Elements, Hamish Hamilton, London, ISBN978-0-8412-1786-7
Su et al. 2020, "Advances in photonics of recently developed Xenes", Nanophotonics, vol. 9, no. 7, doi:10.1515/nanoph-2019-0561
Suresh CH & Koga NA 2001, "A consistent approach toward atomic radii”, Journal of Physical Chemistry A, vol. 105, no. 24. doi:10.1021/jp010432b
Journal of Propulsion and Power, vol. 36, no. 1, pp. Journal of Propulsion and Power, doi:10.2514/1.B37599
Yamaguchi M & Shirai Y 1996, "Defect structures", in Stoloff NS & Sikka VK (eds.), Physical Metallurgy and Processing of Intermetallic Compounds, Chapman & Hall, New York, ISBN978-1-4613-1215-4
Yang J 2004, "Theory of thermal conductivity", in Tritt TM (ed.), Thermal Conductivity: Theory, Properties, and Applications, Kluwer Academic/Plenum Publishers, New York, pp. 1–20, ISBN978-0-306-48327-1,
Yoder CH, Suydam FH & Snavely FA 1975, Chemistry, 2nd ed, Harcourt Brace Jovanovich, New York, ISBN978-0-15-506470-6
Young JA 2006, "Iodine", Journal of Chemical Education, vol. 83, no. 9, doi:10.1021/ed083p1285
Young et al. 2018, General Chemistry: Atoms First, Cengage Learning: Boston, ISBN978-1-337-61229-6
Yousuf M 1998, "Diamond anvil cells in high-pressure studies of semiconductors", in Suski T & Paul W (eds.), High Pressure in Semiconductor Physics II, Semiconductors and Semimetals, vol. 55, Academic Press, San Diego, ISBN978-0-08-086453-2
Zhao J, Tu Z & Chan SH 2021, "Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review", Journal of Power Sources, vol. 488, #229434, doi:10.1016/j.jpowsour.2020.229434
Zhao Z, Zhang H, Kim D. et al. 2017, "Properties of the exotic metastable ST12 germanium allotrope", Nature Communications, vol. 8, article no. 13909, doi:10.1038/ncomms13909, PMID28045027, Toàn văn tại PMC: 5216117
Zhigal'skii GP & Jones BK 2003, The Physical Properties of Thin Metal Films, Taylor & Francis, London, ISBN978-0-415-28390-8
Zhu W 2020, Chemical Elements In Life, World Scientific, Singapore, ISBN978-981-121-032-7
Zhu et al. 2014, "Reactions of xenon with iron and nickel are predicted in the Earth's inner core", Nature Chemistry, vol. 6, doi:10.1038/nchem.1925, PMID24950336
Zumdahl SS & DeCoste DJ 2010, Introductory Chemistry: A Foundation, 7th ed., Cengage Learning, Mason, Ohio, ISBN978-1-111-29601-8
Philippines GDP gấp rưỡi VN là do người dân họ biết tiếng Anh (quốc gia đứng thứ 5 trên thế giới về số người nói tiếng Anh) nên đi xklđ các nước phát triển hơn
Bối cảnh diễn ra vào năm 1984 thời điểm bùng nổ của truyền thông, của những bản nhạc disco bắt tai và môn thể dục nhịp điệu cùng phòng gym luôn đầy ắp những nam thanh nữ tú