Hàm lồi liên hợp của một hàm giá trị thực mở rộng f : X → R ∪ {±∞} (không nhất thiết phải là hàm lồi) là hàm f* : X* → R ∪ {±∞} với X* là không gian đối ngẫu của X, và[3]
Hàm song liên hợp của một hàm f : X → R ∪ {±∞} là hàm liên hợp của hàm liên hợp, thường được viết là f** : X → R ∪ {±∞}. Hàm song liên hợp đóng vai trò hữu ích trong việc xác định khi nào xảy ra đối ngẫu mạnh hoặc đối ngẫu yếu (thông qua hàm nhiễu).
Trong lý thuyết tối ưu hóa, nguyên lý đối ngẫu phát biểu rằng các bài toán tối ưu có thể xem từ cả hai phía, phía bài toán gốc và phía bài toán đối ngẫu.
Tổng quát, cho hai cặp đối ngẫu các không gian lồi địa phươngtách được (X, X*) và (Y, Y*). Với một hàm f : X → R ∪ {+∞} cho trước, ta có thể định nghĩa bài toán gốc là tìm x sao cho
Các điều kiện chế ước (nếu có) có thể được gắn vào hàm f bằng cách đặt f = f + I với I là hàm chỉ thị ứng với điều kiện đó. Gọi F : X × Y → R ∪ {±∞} là hàm nhiễu sao cho F(x, 0) = f(x).[5]
Bài toán đối ngẫu ứng với hàm nhiễu đã chọn được cho bởi
với F* là hàm lồi liên hợp theo cả hai biến của F.
^Csetnek, Ernö Robert (2010). Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. Logos Verlag Berlin GmbH. ISBN978-3-8325-2503-3.
^Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (ấn bản thứ 2). Springer. ISBN978-0-387-29570-1.
Ngay từ đầu mục đích của Jesper chỉ là lợi dụng việc những đứa trẻ luôn thích đồ chơi, dụ dỗ chúng viết thư cho ông già Noel còn mình thì nhanh chóng đạt được mục tiêu bố đề ra và trở lại cuộc sống vô lo vô nghĩ ngày nào