Định lý Gauss

Định lý Gauss, hay còn gọi là định lý phân kỳ, hay định lý Ostrogradsky, hay định lý Gauss-Ostrogradsky (do hai nhà toán học người Đức Carl Friedrich Gaußngười Nga Mikhail Vasilyevich Ostrogradsky nghiên cứu) là kết quả nói lên sự liên quan của dòng chảy (nghĩa là thông lượng) của một trường vectơ thông qua một mặt với hành vi của trường vectơ đó bên trong mặt đó.

Phát biểu định lý

[sửa | sửa mã nguồn]
Miền V được bao quanh bằng một mặt S=∂V với chuẩn của mặt là n.

giả sử V là tập con của Rn (nghĩ đến n = 3) làm một mặt compact và có biên là một hàm trơn gián đoạn. Nếu F là một trường vectơ khả vi liên tục được định nghĩa trên một vùng xung quanh V, thì ta có

vế trái thường được viết như là tích phân thể tích bên trong một quả cầu mà mặt cầu S of được dùng trong tích phân mặt của cùng một thể tích ở phía bên phải

(với ).

với ∂V là biên của V định hướng bằng vecto mặt chuẩn đơn vị hướng ra ngoài, và dS là viết tắt cho ndS, vecto chuẩn hướng hướng ra ngoài của biên ∂V.

Vế trái biểu diễn tổng các nguồn trong thể tích V, và vế phải biểu diễn tổng các dòng chảy qua biên ∂V.

Định lý thường được áp dụng với dạng khác như sau (xem thêm các hằng đẳng thức vectơ):

(this is the basis for Green's identities, if ),

Chú ý là định lý tiêu tán chỉ là một trường hợp của định lý Stokes tổng quát hơn, một định lý tổng quát hóa của định lý cơ sở của vi tích phân.

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Download Game Dream League Soccer 2020
Download Game Dream League Soccer 2020
Dream League Soccer 2020 là phiên bản mới nhất của dòng game bóng đá nổi tiếng Dream League Soccer
3 chiếc túi hiệu thú vị được lòng giới thời trang, nàng công sở cá tính hẳn cũng mê mệt
3 chiếc túi hiệu thú vị được lòng giới thời trang, nàng công sở cá tính hẳn cũng mê mệt
Nếu để chọn ra nững mẫu túi hiệu thú vị đáp ứng được các tiêu chí về hình khối, phom dáng, chất liệu, mức độ hữu dụng cũng như tính kinh điển thì bạn sẽ chọn lựa những mẫu túi nào?
Con người rốt cuộc phải trải qua những gì mới có thể đạt đến sự giác ngộ?
Con người rốt cuộc phải trải qua những gì mới có thể đạt đến sự giác ngộ?
Mọi ý kiến và đánh giá của người khác đều chỉ là tạm thời, chỉ có trải nghiệm và thành tựu của chính mình mới đi theo suốt đời
Tóm lược time line trong Tensura
Tóm lược time line trong Tensura
Trong slime datta ken có một dòng thời gian khá lằng nhằng, nên hãy đọc bài này để sâu chuỗi chúng lại nhé