Định lý Rolle

Trong vi tích phân, định lý Rolle phát biểu rằng bất cứ hàm giá trị thực nào khả vi, đạt giá trị bằng nhau tại hai điểm phân biệt phải có điểm tĩnh lại đâu đó giữa chúng; đó là, một điểm nơi đạo hàm cấp một (hệ số góc của đường tiếp tuyến với đồ thị của hàm) bằng 0.

Chứng minh định lý Rolle phát biểu dưới dạng trên tương đối phức tạp. Thường ta phải sử dụng định lý Fermat. Tuy nhiên, ta có thể phát biểu lại định lý Rolle dưới dạng thu hẹp hơn. Khi đó việc chứng minh là đơn giản.

Định lý Rolle thu hẹp

[sửa | sửa mã nguồn]

Nếu hàm số thực f liên tục trên đoạn [a; b], (a < b), khả vi liên tục trên khoảng (a; b) và f(a) = f(b) thì tồn tại c ∈ (a; b) sao cho f′(c) = 0.

Chứng minh

[sửa | sửa mã nguồn]

Giả sử không tồn tại c ∈ (ab) để f′(c) = 0, tức là f′(x) ≠ 0 ∀x ∈ (ab). Khi đó, do f′(x) liên tục trên (ab) nên f′(x) không đổi dấu trên (ab).

Không giảm tính tổng quát, giả sử f′(x) > 0 ∀x ∈ (a; b). Mà f(x) liên tục trên [a; b] nên f(x) đồng biến trên [ab], suy ra f(a) < f(b), trái với giả thiết f(a) = f(b).

Điều này chứng tỏ giả sử ban đầu của chúng ta là sai. Vậy tồn tại c ∈ (a; b) sao cho f′(c) = 0. Bài toán đã được chứng minh.

Tham khảo

[sửa | sửa mã nguồn]
  • Kaplansky, Irving (1972), Fields and Rings
  • Craven, Thomas; Csordas, George (1977), “Multiplier sequences for fields”, Illinois J. Math., 21 (4): 801–817
  • Ballantine, C.; Roberts, J. (tháng 1 năm 2002), “A Simple Proof of Rolle's Theorem for Finite Fields”, The American Mathematical Monthly, Mathematical Association of America, 109 (1): 72–74, doi:10.2307/2695770, JSTOR 2695770

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Câu hỏi hiện sinh được giải đáp qua
Câu hỏi hiện sinh được giải đáp qua "SOUL" như thế nào
Dù nỗ lực đến một lúc nào đó có lẽ khi chúng ta nhận ra cuộc sống là gì thì niềm tiếc nuối bao giờ cũng nhiều hơn sự hài lòng.
Giải đáp một số câu hỏi về Yelan - Genshin Impact
Giải đáp một số câu hỏi về Yelan - Genshin Impact
Yelan C0 vẫn có thể phối hợp tốt với những char hoả như Xiangling, Yoimiya, Diluc
Kazuha - Sắc lá phong đỏ rực trời thu
Kazuha - Sắc lá phong đỏ rực trời thu
Kazuha là một Samurai vô chủ đến từ Inazuma, tính tình ôn hòa, hào sảng, trong lòng chất chứa nhiều chuyện xưa