Xét đa thức có bậcn bất kì
(với các hệ số có thể thực hoặc phức, an ≠ 0). Bằng định lý cơ bản của đại số, ta luôn biết rằng phương trình này có đủ n nghiệm (không nhất thiết phân biệt) r1, r2, ..., rn. Định lý Vìete cho ta mối liên hệ giữa các nghiệm đó như sau:
(*)
Một cách tổng quát hơn, định lý Vìete có thể được biểu diễn dưới dạng
với k = 1, 2, ..., n.
Định lý Vìete thường được áp dụng cho các đa thức có hệ số trên một miền nguyênR, bởi khi đó thương nằm trong trường các thương của chính R (thậm chí là ở trong R nếu như khả nghịch trong R), khi này các nghiệm nằm trong trường đóng đại số mở rộng của nó.
Đối với các đa thức trên vành giao hoán mà không phải miền nguyên, định lý Vìete chỉ đúng khi không phải là ước của không và đa thức ban đầu có thể được biểu diễn dưới dạng . Một phản ví dụ cho tình huống định lý Vìete không đúng là ở vành thặng dư modulo 8, phương trình bậc hai có tới bốn nghiệm là 1, 3, 5 và 7.
Nhờ định lý Bézout, khi phương trình đa thức bậc n có đủ n nghiệm trên một miền nguyên, khi này đa thức đó có thể được biểu diễn dưới dạng
Từ đây, một cách chứng minh rất trực tiếp và tự nhiên của định lý Vìete là nhân khai triển toàn bộ vế phải, sau đó đồng nhất thức để có được điều cần chứng minh.
Giả sử phương trình bậc hai có các hệ số bậc thấp dần lần lượt là và hai nghiệm . Bằng định lý Bézout ta có ngay
Tiến hành nhân biểu thức ở vế phải cho ta ngay điều cần chứng minh:
Khi này, giả sử giả thuyết quy nạp vẫn đúng với , ta cần chứng minh nó đúng với , tức là đúng với đa thức
Ta biến đổi tương đương đa thức trở thành
, hay
Thực hiện phép chia và để đơn giản, ta sẽ viết lại đa thức dưới một bộ hệ số là
Sử dụng giả thuyết quy nạp, ta có ngay
Nhân khai triển vế phải cho ta điều cần chứng minh.
Định lý này được tìm ra bởi nhà toán học người Pháp François Viète vào thế kỷ thứ 16 trong trường hợp các nghiệm đều dương.
Theo quan điểm của nhà toán học người Anh Charles Hutton,[2] trường hợp tổng quát như ngày nay lần đầu tiên được biết đến bởi nhà toán học người Pháp Albert Girard vào thế kỷ thứ 17:
...(Girad là) người đầu tiên tìm được mối quan hệ tổng quát giauwx các hệ số của đa thức với tổng và tích của các nghiệm. Anh ta là người đầu tiên phát hiện ra quy luật của tổng các nghiệm của một phương trình bất kì.
Funkhouser, H. Gray (1930), “A short account of the history of symmetric functions of roots of equations”, American Mathematical Monthly, Mathematical Association of America, 37 (7): 357–365, doi:10.2307/2299273, JSTOR2299273
Djukić, Dušan; và đồng nghiệp (2006), The IMO compendium: a collection of problems suggested for the International Mathematical Olympiads, 1959–2004, Springer, New York, NY, ISBN0-387-24299-6
Bạn có thể nhắn tin với rất nhiều người trên mạng xã hội nhưng với những người xung quanh bạn như gia đình, bạn bè lại trên thực tế lại nhận được rất ít những sự thấu hiểu thực sự của bạn