Nọc độc (Anh: venom hoặc zootoxin) là một loại độc tố do động vật tạo ra và xâm nhập vào cơ thể của cá thể khác qua vết cắn, vết chích, vết đốt hoặc các hành động tạo nên vết thương khác.[1][2][3]Độc tố được truyền qua một "bộ máy nọc độc" (cơ quan này được tiến hóa đặc trưng từng loài) chẳng hạn như răng nanh hoặc ngòi đốt đi vào cơ thể của mục tiêu.[2] Khác với nọc độc, chất độc (poison) được hấp thụ một cách thụ động bằng cách ăn phải, hít phải hoặc hấp thụ qua da,[4] còn toxungen, được truyền chủ động sang bề mặt của mục tiêu mà không cần tiếp xúc vật lý.[5]
Hàng năm, động vật có nọc đọc cướp đi sinh mạng của hàng chục nghìn người.
Nọc độc thường là hỗn hợp phức tạp của các loại độc tố khác nhau. Chất độc từ nọc độc được sử dụng để điều trị bệnh như huyết khối, viêm khớp và một số bệnh ung thư. Lĩnh vực nghiên cứu protein có trong nọc độc (venomics) khám phá cách sử dụng độc tố nọc độc như một phương pháp điều trị tiềm năng cho nhiều căn bệnh khác.
Nhiều loài thuộc các đơn vị phân loại khác nhau, mặc dù tiến hóa độc lập nhưng vẫn sử dụng nọc đọc làm phương thức săn mồi và tự vệ. Đây là một ví dụ về tiến hóa hội tụ. Rất khó để trả lời câu hỏi làm cách nào mà đặc điểm này rất phổ biến và đa dạng đến vậy. Các họ đa gen (multigene family) mã hóa độc tố của động vật có nọc độc trải qua chọn lọc tự nhiên rất tích cực, tạo ra nhiều độc tố đa dạng hơn với các chức năng cụ thể. Nọc độc thích nghi với môi trường và mục tiêu của chúng, tiến hóa để có hiệu quả tối đa đối với mục tiêu của kẻ săn mồi (tiến hóa đến mức còn đặc hiệu đến từng loại kênh ion bên trong từng loại con mồi).[6]
Nọc độc gây ra tác dụng sinh học thông qua các độc tố mà cơ thể động vật chứa; một số nọc độc là hỗn hợp phức tạp của nhiều loại độc tố khác nhau. Các loại độc tố chính trong nọc độc gồm:[7]
Các loài động vật thuộc đơn vị phân loại khác nhau có sử dụng nọc độc, cả động vật không xương sống và động vật có xương sống, ở động vật dưới nước và trên cạn, ở cả động vật ăn thịt và con mồi. Các nhóm động vật có nọc độc được mô tả dưới đây.
ong và tò vò (ong bắp cày), ngòi đốt là biến đổi của dùi đẻ trứng (ovipositor) trên cơ thể côn trùng.[16]
Polistes fuscatus (thuộc chi Polistes, một loại vò vẽ), con cái liên tục tiết ra nọc độc có chứa pheromone giới tính tạo ra hành vi giao phối ở con đực.[16]
Polistes exlamans (một loài ong bắp cày), nọc độc là pheromone "báo động", điều phối phản ứng từ tổ ong và thu hút những con ong bắp cày gần đó tấn công kẻ săn mồi.[17]
Parischnogaster striatula (một loài ong bắp cày), nọc độc được bôi khắp cơ thể như một chất bảo vệ chống nhiễm khuẩn.[18]
Nhiều loài sâu bướm có tuyến nọc độc phòng thủ gắn liền với những sợi lông chuyên biệt trên cơ thể gọi là lớp lông ngứa (urticating hairs). Lớp lông này ở các loài sâu bướm thường chỉ gây ngứa rát, khó chịu, nhưng ở sâu bướm Lonomia thì có thể gây chết người.[19]
Ong tổng hợp và sử dụng nọc độc có tính acid (apitoxin) để bảo vệ tổ và kho thức ăn của chúng, trong khi ong bắp cày sử dụng nọc độc khác về mặt hóa học để làm tê liệt con mồi, vì vậy con ong bắp cày non ăn con mồi vẫn còn sống. Nhiều loài côn trùng khác, chẳng hạn như bọ Cánh nửa và nhiều loài kiến, cũng tạo ra nọc độc.[20] Loài kiến Polyrhachis dives sử dụng nọc độc tại chỗ để khử mầm bệnh.[21]
Một số loài thuộc họ Kỳ giông có thể nhô ra những chiếc xương sườn sắc nhọn có nọc độc.[28][29] Hai loài ếch ở Brazil có những chiếc gai nhỏ xung quanh đỉnh hộp sọ, khi va chạm sẽ tiêm nọc độc vào mục tiêu.[30]
Nọc độc của rắn chuông đồng cỏ, Crotalus viridis (bên trái), có chứa metalloproteinase (bên phải) giúp tiêu hóa con mồi trước khi ăn.
Khoảng 450 loài rắn có nọc độc.[27]Nọc rắn được tạo ra bởi các tuyến nước bọt hàm dưới và đưa đến mục tiêu thông qua các răng nanh hình ống. Nọc rắn chứa nhiều loại độc tố peptide, bao gồm protease, có tác dụng thủy phân các liên kết peptide của protein; nuclease thủy phân các liên kết phosphodiester của DNA ; và các chất độc thần kinh, làm gián đoạn tín hiệu trong hệ thần kinh.[31] Nọc rắn gây ra các triệu chứng đau, sưng, hoại tử mô, tụt huyết áp, co giật, xuất huyết (tùy theo loài rắn), liệt cơ hô hấp, suy thận, hôn mê và tử vong.[32] Nọc độc của rắn có thể bắt nguồn từ tái bản gen biểu hiện ở tuyến nước bọt của tổ tiên loài rắn.[33][34]
Nghiên cứu sâu rộng về thú mỏ vịt cho thấy độc tố của chúng ban đầu được hình thành từ quá trình tái bản gen, nhưng dữ liệu cung cấp bằng chứng cho thấy sự tiến hóa của nọc độc của thú mỏ vịt không phụ thuộc quá nhiều vào quá trình sao chép gen như người ta từng nghĩ.[44] Tuyến mồ hôi của thú mỏ vịt phát triển thành tuyến nọc độc. Mặc dù nọc độc của bò sát và thú mỏ vịt được chứng minh là tiến hóa độc lập nhưng có một số cấu trúc protein nhất định có lợi cho việc tiến hóa thành các phân tử độc hại. Luận điểm cung cấp thêm bằng chứng về lý do mà nọc độc lại trở thành một đặc điểm đồng nhất và lý do tại sao mà các loài động vật rất khác nhau, tiến hóa độc lập nhau nhưng lại hội tụ tại đặc điểm sử dụng nọc độc này.[13]
Năm 1990, động vật có nọc đọc cướp đi sinh mạng của 76.000 người. Năm 2017, con số này là 57.000 người.[45] Nọc độc được tìm thấy ở hơn 173.000 loài. Tuy gây chết người, nọc độc trở thành phương pháp điều trị cho nhiều loại bệnh, đã có hơn 5.000 bài báo khoa học nghiên cứu tiềm năng này.[36]
Nọc độc được nhiều loài săn mồi sử dụng làm vũ khí. Sự đồng tiến hóa giữa kẻ săn mồi và con mồi là động lực để tiến hóa các biện pháp kháng nọc độc trong giới động vật.[51] Sự đồng tiến hóa giữa kẻ săn mồi có nọc độc và con mồi kháng nọc độc được mô tả là một cuộc chạy đua vũ trang hóa học.[52] Cả động vật ăn thịt/con mồi cùng tiến hóa trong thời gian dài.[53] Khi động vật săn mồi ăn thịt được những cá thể con mồi nhạy cảm với nọc độc, những cá thể con mồi sống sót có khả năng trốn tránh động vật săn mồi.[54] Sức đề kháng thường tăng lên theo thời gian khi kẻ săn mồi ngày càng không thể nào săn được con mồi nữa.[55] Quá trình tiến hóa được để khả năng kháng nọc độc của cả động vật ăn thịt và con mồi đều chiếm thời gian dài.[56] Sự đề kháng sinh lý giúp tăng cơ hội sống sót cho con mồi, nhưng nó lại là động lực cho phép những kẻ săn mồi mở rộng ổ dinh dưỡng chưa được khai thác khác.[57]
Otospermophilus beecheyi (thuộc Họ Sóc) có mức độ đề kháng khác nhau trước nọc độc của rắn đuôi chuông Thái Bình Dương (Crotalus oreganus).[58] Sóc đề kháng bằng cách loại bỏ độc tố và mức độ đề kháng phụ thuộc vào quần thể. Nơi nào quần thể rắn đuôi chuông dày đặc hơn, sức đề kháng của sóc cao hơn.[59] Đáp lại sự đề kháng này, rắn đuôi chuông đã tiến hóa để tăng hiệu quả của nọc độc.[60]
Chi Rắn vua (Lampropeltis) ở châu Mỹ lại chuyên đi săn mồi nhiều loài rắn độc khác.[61] Loài này tiến hóa sức đề kháng của mình đến mức không còn thay đổi theo độ tuổi của cá thể và mức độ tiếp xúc với nọc độc.[55] Rắn vua miễn nhiễm với nọc độc của các loài rắn trong môi trường sống như rắn đầu đồng, rắn hổ mang và rắn đuôi chuông Bắc Mỹ, nhưng lại không miễn nhiễm với nọc độc của rắn hổ mang chúa hoặc rắn mamba đen.[62]
Trong số các động vật biển, lươn có khả năng kháng nọc độc của rắn biển, mặc dù trong nọc độc có chứa hỗn hợp phức tạp các neurotoxin, myotoxin, và nephrotoxin (độc tố thận) khác nhau tùy theo loài.[63][64] Lươn có khả năng đề kháng đặc biệt với nọc độc của loài rắn biển chuyên ăn chúng (tức là có hiện tượng đồng tiến hóa). Các loài cá không phải là con mồi của rắn biển thì có ít khả năng kháng lại nọc độc của rắn biển.[65]
Cá hề luôn sống giữa các xúc tu của hải quỳ có nọc độc (đây là mối quan hệ cộng sinh bắt buộc của loài cá),[66] và có khả năng kháng lại nọc độc của hải quỳ.[67][68] Chỉ có 10 loài hải quỳ được biết đến sống cộng sinh với cá hề và có sự tương thích một cách đặc hiệu giữa các cặp hải quỳ và cá hề.[69][70] Tất cả các loài hải quỳ đều tạo ra nọc độc và phóng thích nhờ tế bào hình mũi lao (cnidocyte, còn gọi là thích ty bào) và dịch tiết nhầy. Nọc độc chứa các peptide và protein, được sử dụng để bắt mồi và ngăn chặn kẻ săn mồi bằng cách gây đau đớn, làm mất khả năng phối hợp cơ bắp và tổn thương mô của mục tiêu. Cá hề có chất nhầy bảo vệ hoạt động như một chất ngụy trang hóa học hoặc chất mô phỏng cao phân tử, để ngăn chặn sự nhận biết "không tự chủ" của hải quỳ và tế bào châm (nematocyst).[71][72][73] Cá hề có thể tiến hóa chất nhầy của chúng sao cho đáp ứng tốt để đề kháng với chất nhầy của một loài hải quỳ đặc hiệu.[73]
^Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465. doi:10.1111/brv.12062. PMID: 24102715.
^Raffray, M.; Cohen, G. M. (1997). “Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death?”. Pharmacology & Therapeutics. 75 (3): 153–177. doi:10.1016/s0163-7258(97)00037-5. PMID9504137.
^Dutertre, Sébastien; Lewis, Richard J. (2006). “Toxin insights into nicotinic acetylcholine receptors”. Biochemical Pharmacology. 72 (6): 661–670. doi:10.1016/j.bcp.2006.03.027. PMID16716265.
^Samejima, Y.; Aoki, Y.; Mebs, D. (1991). “Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus)”. Toxicon. 29 (4): 461–468. doi:10.1016/0041-0101(91)90020-r. PMID1862521.
^ abcdePost Downing, Jeanne (1983). “Venom: Source of a Sex Pheromone in the Social Wasp Polistes fuscatus (Hymenoptera: Vespidae)”. Journal of Chemical Ecology. 9 (2): 259–266. doi:10.1007/bf00988043. PMID24407344.
^Post Downing, Jeanne (1984). “Alarm response to venom by social wasps Polistes exclamans and P. fuscatus”. Journal of Chemical Ecology. 10 (10): 1425–1433. doi:10.1007/BF00990313. PMID24318343.
^Baracchi, David (tháng 1 năm 2012). “From individual to collective immunity: The role of the venom as antimicrobial agent in the Stenogastrinae wasp societies”. Journal of Insect Physiology. 58 (1): 188–193. doi:10.1016/j.jinsphys.2011.11.007. PMID22108024.
^Pinto, Antônio F. M.; Berger, Markus; Reck, José; Terra, Renata M. S.; Guimarães, Jorge A. (15 tháng 12 năm 2010). “Lonomia obliqua venom: In vivo effects and molecular aspects associated with the hemorrhagic syndrome”. Toxicon. 56 (7): 1103–1112. doi:10.1016/j.toxicon.2010.01.013. PMID20114060.
^Graystock, Peter; Hughes, William O. H. (2011). “Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands”. Behavioral Ecology and Sociobiology. 65 (12): 2319–2327. doi:10.1007/s00265-011-1242-y.
^Gallagher, Scott A. (2 tháng 8 năm 2017). “Echinoderm Envenomation”. EMedicine. Truy cập ngày 12 tháng 10 năm 2010.
^Olivera, B. M.; Teichert, R. W. (2007). “Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery”. Molecular Interventions. 7 (5): 251–260. doi:10.1124/mi.7.5.7. PMID17932414.
^Nowak, R. T.; Brodie, E. D. (1978). “Rib Penetration and Associated Antipredator Adaptations in the Salamander Pleurodeles waltl (Salamandridae)”. Copeia. 1978 (3): 424–429. doi:10.2307/1443606. JSTOR1443606.
^Cantrell, F. L. (2003). “Envenomation by the Mexican beaded lizard: a case report”. Journal of Toxicology. Clinical Toxicology. 41 (3): 241–244. doi:10.1081/CLT-120021105. PMID12807305.
^Fry, B. G.; Wuster, W.; Ramjan, S. F. R.; Jackson, T.; Martelli, P.; Kini, R. M. 2003c. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: Evolutionary and toxinological implications. Rapid Communications in Mass Spectrometry 17:2047-2062.
^Pal, S. K.; Gomes, A.; Dasgupta, S. C.; Gomes, A. (2002). “Snake venom as therapeutic agents: from toxin to drug development”. Indian Journal of Experimental Biology. 40 (12): 1353–1358. PMID12974396.
^Dawkins, Richard; Krebs, John Richard; Maynard Smith, J.; Holliday, Robin (21 tháng 9 năm 1979). “Arms races between and within species”. Proceedings of the Royal Society of London. Series B. Biological Sciences. 205 (1161): 489–511. Bibcode:1979RSPSB.205..489D. doi:10.1098/rspb.1979.0081. PMID42057.
^McCabe, Thomas M.; Mackessy, Stephen P. (2015). Gopalakrishnakone, P.; Malhotra, Anita (biên tập). Evolution of Resistance to Toxins in Prey. Evolution of Venomous Animals and Their Toxins. Toxinology. Springer Netherlands. tr. 1–19. doi:10.1007/978-94-007-6727-0_6-1. ISBN978-94-007-6727-0.
^Poran, Naomie S.; Coss, Richard G.; Benjamini, Eli (1 tháng 1 năm 1987). “Resistance of California ground squirrels (Spermophilus Beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus Viridis Oreganus): A study of adaptive variation”. Toxicon. 25 (7): 767–777. doi:10.1016/0041-0101(87)90127-9. ISSN0041-0101. PMID3672545.
^Coss, Richard G.; Poran, Naomie S.; Gusé, Kevin L.; Smith, David G. (1 tháng 1 năm 1993). “Development of Antisnake Defenses in California Ground Squirrels (Spermophilus Beecheyi): II. Microevolutionary Effects of Relaxed Selection From Rattlesnakes”. Behaviour. 124 (1–2): 137–162. doi:10.1163/156853993X00542. ISSN0005-7959.
^Weinstein, Scott A.; DeWitt, Clement F.; Smith, Leonard A. (tháng 12 năm 1992). “Variability of Venom-Neutralizing Properties of Serum from Snakes of the Colubrid Genus Lampropeltis”. Journal of Herpetology. 26 (4): 452. doi:10.2307/1565123. JSTOR1565123.
^Heatwole, Harold; Poran, Naomie S. (15 tháng 2 năm 1995). “Resistances of Sympatric and Allopatric Eels to Sea Snake Venoms”. Copeia. 1995 (1): 136. doi:10.2307/1446808. JSTOR1446808.
^Heatwole, Harold; Powell, Judy (tháng 5 năm 1998). “Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution”. Toxicon. 36 (4): 619–625. doi:10.1016/S0041-0101(97)00081-0. PMID9643474.
^Zimmerman, K. D.; Heatwole, Harold; Davies, H. I. (1 tháng 3 năm 1992). “Survival times and resistance to sea snake (Aipysurus laevis) venom by five species of prey fish”. Toxicon. 30 (3): 259–264. doi:10.1016/0041-0101(92)90868-6. ISSN0041-0101. PMID1529461.
^Mebs, Dietrich (15 tháng 12 năm 2009). “Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans”. Toxicon. Cnidarian Toxins and Venoms. 54 (8): 1071–1074. doi:10.1016/j.toxicon.2009.02.027. ISSN0041-0101. PMID19268681.
^da Silva, Karen Burke; Nedosyko, Anita (2016), Goffredo, Stefano; Dubinsky, Zvy (biên tập), “Sea Anemones and Anemonefish: A Match Made in Heaven”, The Cnidaria, Past, Present and Future: The world of Medusa and her sisters, Springer International Publishing, tr. 425–438, doi:10.1007/978-3-319-31305-4_27, ISBN978-3-319-31305-4
^Lubbock, R.; Smith, David Cecil (13 tháng 2 năm 1980). “Why are clownfishes not stung by sea anemones?”. Proceedings of the Royal Society of London. Series B. Biological Sciences. 207 (1166): 35–61. Bibcode:1980RSPSB.207...35L. doi:10.1098/rspb.1980.0013.
Fry, B. G., N. Vidal, J. A. Norman, F. J. Vonk, H. Scheib, S. F. R. Ramjan, S. Kuruppu, K. Fung, S. B. Hedges, M. K. Richardson, W. C. Hodgson, V. Ignjatovic, R. Summerhayes, and E. Kochva. 2006. Early evolution of the venom system in lizards and snakes. Nature (London) 439:584-588.
Fry, B. G., W. Wuster, S. F. R. Ramjan, T. Jackson, P. Martelli, and R. M. Kini. 2003c. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: Evolutionary and toxinological implications. Rapid Communications in Mass Spectrometry 17:2047-2062.
Hargreaves, A. D., Swain, M. T., Hegarty, M. J., Logan, D.W., & Mulley, J. F. (2014). Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins.BioRxiv.
Kordiš, D., & Gubenšek, F. (2000). Adaptive evolution of animal toxin multigene families. Gene 261:43-52.
Ligabue-Braun, R., Verli, H., & Carlini, C. R. (2012). Venomous mammals: a review. Toxicon 59:680-695.
Whittington, C. M., Papenfuss, A. T., Bansal, P., Torres, A. M., Wong, E. S., Deakin, J. E., & Belov, K. (2008). Defensins and the convergent evolution of platypus and reptile venom genes.Genome research 18:986-994.
Wong, E. S., & Belov, K. (2012). Venom evolution through gene duplications. Gene 496:1-7.
Nếu mình không thể làm gì, thì cứ đà này mình sẽ kéo cả lớp D liên lụy mất... Những kẻ mà mình xem là không cùng đẳng cấp và vô giá trị... Đến khi có chuyện thì mình không chỉ vô dụng mà lại còn dùng bạo lực ra giải quyết. Thật là ngớ ngẩn...