Hình học elliptic

Hình học elliptic là một ví dụ về hình học trong đó tiên đề song song của Euclid là không đúng. Thay vào đó, như trong hình học cầu, không có đường thẳng song song vì hai đường thẳng trên mặt cầu luôn giao nhau. Tuy nhiên, không giống như trong hình học cầu, hai đường thường được giả định là giao nhau tại một điểm (chứ không phải hai). Bởi vì điều này, hình học elip được mô tả trong bài viết này đôi khi được gọi là hình học elliptic đơn trong khi hình học hình cầu đôi khi được gọi là hình học elliptic đôi.

Sự xuất hiện của hình học này trong thế kỷ XIX đã kích thích sự phát triển của hình học phi Euclide nói chung, bao gồm cả hình học hyperbol.

Hình học elliptic có nhiều tính chất khác với các đặc tính của hình học phẳng Euclide cổ điển. Ví dụ: tổng các góc trong của bất kỳ tam giác nào luôn lớn hơn 180°.

Định nghĩa

[sửa | sửa mã nguồn]

Trong hình học elip, hai đường thẳng vuông góc với một đường thẳng đã cho phải cắt nhau. Trong thực tế, các đường vuông góc ở một phía tất cả giao nhau tại một điểm duy nhất gọi là cực tuyệt đối của đường thẳng đó. Các đường vuông góc ở phía bên kia cũng giao nhau tại một điểm. Tuy nhiên, không giống như trong hình học hình cầu, các cực ở hai bên là như nhau. Điều này là do không có điểm đối cực trong hình học elip. Ví dụ, điều này đạt được trong mô hình siêu phẳng (được mô tả bên dưới) bằng cách tạo các "điểm" trong hình học của chúng ta thực sự là các cặp điểm đối diện trên một hình cầu. Lý do để làm điều này là vì nó cho phép hình học elliptic thỏa mãn tiên đề rằng có một đường thẳng duy nhất đi qua hai điểm bất kỳ.

Mỗi điểm tương ứng với một đường cực tuyệt đối mà nó là cực tuyệt đối. Bất kỳ điểm nào trên đường cực này tạo thành một cặp liên hợp tuyệt đối với cực. Một cặp điểm như vậy là trực giao và khoảng cách giữa chúng là một góc phần tư.[1] :89

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Duncan Sommerville (1914) The Elements of Non-Euclidean Geometry, chapter 3 Elliptic geometry, pp 88 to 122, George Bell & Sons
Chúng tôi bán
Bài viết liên quan
Haruka Hasebe - Classroom of the Elite
Haruka Hasebe - Classroom of the Elite
Haruka Hasebe (長は谷せ部べ 波は瑠る加か, Hasebe Haruka) là một trong những học sinh của Lớp 1-D.
Quân đội Israel - Nguồn Gốc và Sức Mạnh
Quân đội Israel - Nguồn Gốc và Sức Mạnh
Đây là lời tuyên chiến đầu tiên của Israel kể từ năm 1973, tỏ rõ ý định muốn chơi tới cùng với Hamas và chắc chắn sẽ giành được chiến thắng chung cuộc.
Tổng quan về bang Tokyo Manji trong Tokyo Revengers
Tổng quan về bang Tokyo Manji trong Tokyo Revengers
Tokyo Manji Gang (東京卍會, Tōkyō Manji-Kai?), thường được viết tắt là Toman (東卍, Tōman?), là một băng đảng mô tô có trụ sở tại Shibuya, Tokyo
Những con quỷ không thể bị đánh bại trong Kimetsu no Yaiba
Những con quỷ không thể bị đánh bại trong Kimetsu no Yaiba
Nếu Akaza không nhớ lại được quá khứ nhờ Tanjiro, anh sẽ không muốn tự sát và sẽ tiếp tục chiến đấu