Số Leyland

Theo lý thuyết số, số Leyland là một số có dạng

Trong đó xycác số nguyên lớn hơn 1.[1] Chúng được đặt theo tên của nhà toán học Paul Leyland. Một vài số Leyland đầu tiên là

8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124 (dãy số A076980 trong bảng OEIS) .

Điều kiện xy đều lớn hơn 1 là quan trọng, vì nếu không có nó, mọi số nguyên dương sẽ là một số Leyland có dạng . Ngoài ra, do tính chất giao hoán của phép cộng, điều kiện xy thường được thêm vào để tránh trùng lặp tập hợp các số Leyland (vì vậy có 1 < yx ).

Số nguyên tố Leyland

[sửa | sửa mã nguồn]

Số nguyên tố Leyland là một số vừa là số Leyland vừa là số nguyên tố. Một vài số nguyên tố Leyland đầu tiên là:

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, ... (dãy số A094133 trong bảng OEIS)

tương ứng với

32 +23, 92 +29, 152 +215, 212 +221, 332 +233, 245 +524, 563 +356, 3215 +1532 . [2]

Người ta cũng có thể cố định giá trị của y và xem xét chuỗi các giá trị x tạo ra các số nguyên tố Leyland, ví dụ x 2 + 2 x là số nguyên tố đối với x = 3, 9, 15, 21, 33, 2007, 2127, 3759 ,. . . ( A064539 ).


Có một dự án được gọi là XYYXF để phân tích các số Leyland là hợp số . [3]


Hiện tại, số Leyland lớn nhất có thể là số nguyên tố là 81650 54369 +54369 81650 (386.642 chữ số). Số này được tìm thấy bởi Yusuf AttarBashi, vào tháng 6 năm 2021. [4]

Số Leyland thuộc loại thứ hai

[sửa | sửa mã nguồn]

Số Leyland thuộc loại thứ hai là số có dạng

Trong đó xycác số nguyên lớn hơn 1. Những con số đầu tiên như vậy là:

0, 1, 7, 17, 28, 79, 118, 192, 399, 431, 513, 924, 1844, 1927, 2800, 3952, 6049, 7849, 8023, 13983, 16188, 18954, 32543, 58049, 61318, 61440, 65280, 130783, 162287, 175816, 255583, 261820, ... (dãy số A045575 trong bảng OEIS)

Số nguyên tố Leyland thuộc loại thứ hai là số vừa là số Leyland thuộc loại thứ hai, vừa là số nguyên tố. Một vài số đầu tiên như vậy là:

7, 17, 79, 431, 58049, 130783, 162287, 523927, 2486784401, 6102977801, 8375575711, 13055867207, 83695120256591, 375700268413577, 2251799813682647, ... (dãy số A123206 trong bảng OEIS)

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Richard Crandall and Carl Pomerance (2005), Prime Numbers: A Computational Perspective, Springer
  2. ^ “Primes and Strong Pseudoprimes of the form xy + yx. Paul Leyland. Bản gốc lưu trữ ngày 10 tháng 2 năm 2007. Truy cập ngày 14 tháng 1 năm 2007.
  3. ^ “Factorizations of xy + yx for 1 < y < x < 151”. Andrey Kulsha. Truy cập ngày 24 tháng 6 năm 2008.
  4. ^ Havermann, Hans. “List of known Leyland primes”. Lưu trữ bản gốc ngày 30 tháng 6 năm 2021. Truy cập ngày 30 tháng 6 năm 2021.
Chúng tôi bán
Bài viết liên quan
Dead by Daylight - An asymmetrical multiplayer horror game
Dead by Daylight - An asymmetrical multiplayer horror game
Dead by Daylight đang được phát hành trước, nhắm tới một số đối tượng người dùng ở khu vực Bắc Âu
Valentine đen 14/4 - Đặc quyền bí mật khi em chưa thuộc về ai
Valentine đen 14/4 - Đặc quyền bí mật khi em chưa thuộc về ai
Giống như chocolate, những món ăn của Valentine Đen đều mang vị đắng và ngọt hậu. Hóa ra, hương vị tình nhân và hương vị tự do đâu có khác nhau nhiều
Review Ayato - Genshin Impact
Review Ayato - Genshin Impact
Về lối chơi, khả năng cấp thủy của Ayato theo mình đánh giá là khá yếu so với những nhân vật cấp thủy hiện tại về độ dày và liên tục của nguyên tố
Chân dung Drew Gilpin Faust - Hiệu trưởng Đại học Harvard
Chân dung Drew Gilpin Faust - Hiệu trưởng Đại học Harvard
Đó là những lời khẳng định đanh thép, chắc chắn và đầy quyền lực của người phụ nữ đang gánh trên vai ngôi trường đại học hàng đầu thế giới